Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Curr Med Chem ; 29(31): 5254-5267, 2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-35400322

RESUMEN

BACKGROUND: Macrophage migration inhibitory factor (MIF) is a proinflammatory cytokine with chemokine properties released by various immune and non-immune cells. It contributes to the pathogenesis of many inflammatory, autoimmune diseases and malignant tumors. OBJECTIVE: Our study aimed to investigate the role of betaine in the modulation of MIF-mediated oxidative stress, inflammation, and fibrogenesis during toxic kidney damage induced by thioacetamide (TAA). METHODS: The experiment is performed on wild-type and knockout MIF-/- C57BL/6 mice. They are randomly divided into groups: Control; Bet-group, received betaine (2% wt/v dissolved in drinking water); MIF-/- mice group; MIF-/- + Bet; TAA-group, treated with TAA (200 mg/kg b.w.), intraperitoneally, 3x/week/8 weeks); TAA+Bet; MIF-/-+TAA, and MIF-/- + TAA+Bet group. After eight weeks of treatment, animals are sacrificed and kidney samples are taken to determine oxidative stress parameters, proinflammatory cytokines, profibrogenic factors, and histopathology of renal tissue. RESULTS: In MIF-/-mice, TAA decreases malondialdehyde (MDA) concentration, IL-6, tumor necrosis factor-alpha (TNF-α), transforming growth factor-beta 1 (TGF-ß1) and platelet-derived growth factor-BB (PDGF-BB) and increases superoxide dismutases (SOD) and catalase (CAT) activities, as well as glutathione (GSH) content in kidneys, compared to TAA group. Betaine alleviates the mechanism of MIF-mediated effects in TAA-induced nephrotoxicity, reducing MDA, IL-6, TNF-α, TGF-ß1, and PDGF-BB, and increasing SOD and CAT activity, as well as GSH levels. CONCLUSION: MIF mediates TAA-induced nephrotoxicity by increasing oxidative stress, inflammation, and profibrogenic mediators. MIF-targeted therapy could potentially alleviate oxidative stress and inflammation in the kidney, as well as pathohistological changes in renal tissue, but the exact mechanism of its action is not completely clear. Betaine alleviates MIF nephrotoxic effects by increasing the antioxidative capacity of kidney cells, and decreasing lipid peroxidation and cytokine production in the renal tissue. It suggests that betaine can be used for the prevention of kidney damage.


Asunto(s)
Enfermedades Renales , Factores Inhibidores de la Migración de Macrófagos , Animales , Antioxidantes/farmacología , Becaplermina/metabolismo , Becaplermina/farmacología , Betaína/metabolismo , Betaína/farmacología , Betaína/uso terapéutico , Glutatión/metabolismo , Inflamación/metabolismo , Interleucina-6/metabolismo , Enfermedades Renales/metabolismo , Hígado/metabolismo , Factores Inhibidores de la Migración de Macrófagos/genética , Factores Inhibidores de la Migración de Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Estrés Oxidativo , Superóxido Dismutasa/metabolismo , Tioacetamida/metabolismo , Tioacetamida/toxicidad , Factor de Crecimiento Transformador beta1/metabolismo , Factor de Crecimiento Transformador beta1/farmacología , Factor de Necrosis Tumoral alfa/metabolismo
2.
Curr Med Chem ; 28(16): 3249-3268, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33148149

RESUMEN

BACKGROUND: Macrophage migration inhibitory factor (MIF) is a multipotent cytokine that contributes to the inflammatory response to chemical liver injury. This cytokine exhibits pro- and anti-inflammatory effects depending on the etiology and stage of liver disease. OBJECTIVE: Our study aimed to investigate the role of MIF in oxidative stress and inflammation in the liver, and modulatory effects of betaine on MIF in thioacetamide (TAA)-induced chronic hepatic damage in mice. METHODS: The experiment was performed on wild type and knockout MIF-/- C57BL/6 mice. They were divided into the following groups: control; Bet-group that received betaine (2% wt/v dissolved in drinking water); MIF-/- mice group; MIF-/-+Bet; TAA-group that received TAA (200 mg/kg b.w.), intraperitoneally, 3x/week/8 weeks); TAA+Bet; MIF-/-+TAA, and MIF-/-+TAA+Bet. In TAA- and Bet-treated groups, animals received the same doses. After eight weeks of treatment, blood samples were collected for biochemical analysis, and liver specimens were prepared for the assessment of parameters of oxidative stress and inflammation. RESULTS: In MIF-/-mice, TAA reduced transaminases, γ-glutamyltranspeptidase, bilirubin, malondialdehyde (MDA), oxidative protein products (AOPP), total oxidant status (TOS), C-reactive protein (CRP), IL-6, IFN-γ, and increased thiols and total antioxidant status (TAS). Betaine attenuated the mechanism of MIF and mediated effects in TAA-induced liver injury, reducing transaminases, γ-glutamyltranspeptidase, bilirubin, MDA, AOPP, TOS, CRP, IL-6, IFN-g, and increasing thiols. CONCLUSION: MIF is a mediator in hepatotoxic, pro-oxidative, and proinflammatoryeffects of TAA-induced liver injury. MIF-targeted therapy can potentially mitigate oxidative stress and inflammation in the liver, but the exact mechanism of its action requires further investigation. Betaine increases anti-oxidative defense and attenuates hepatotoxic effects of MIF, suggesting that betaine can be used for the prevention and treatment of liver damage.


Asunto(s)
Enfermedad Hepática Crónica Inducida por Sustancias y Drogas , Enfermedad Hepática Inducida por Sustancias y Drogas , Factores Inhibidores de la Migración de Macrófagos , Animales , Betaína/metabolismo , Betaína/uso terapéutico , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Enfermedad Hepática Crónica Inducida por Sustancias y Drogas/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Hígado/metabolismo , Factores Inhibidores de la Migración de Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Estrés Oxidativo , Tioacetamida/metabolismo , Tioacetamida/toxicidad
3.
Curr Med Chem ; 28(1): 169-180, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32124686

RESUMEN

Dysfunction of the endocannabinoid system (ES) has been identified in nonalcoholic fatty liver disease (NAFLD) and associated metabolic disorders. Cannabinoid receptor type 1 (CB1) expression is largely dependent on nutritional status. Thus, individuals suffering from NAFLD and metabolic syndrome (MS) have a significant increase in ES activity. Furthermore, oxidative/ nitrosative stress and inflammatory process modulation in the liver are highly influenced by the ES. Numerous experimental studies indicate that oxidative and nitrosative stress in the liver is associated with steatosis and portal inflammation during NAFLD. On the other hand, inflammation itself may also contribute to reactive oxygen species (ROS) production due to Kupffer cell activation and increased nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity. The pathways by which endocannabinoids and their lipid-related mediators modulate oxidative stress and lipid peroxidation represent a significant area of research that could yield novel pharmaceutical strategies for the treatment of NAFLD. Cumulative evidence suggested that the ES, particularly CB1 receptors, may also play a role in inflammation and disease progression toward steatohepatitis. Pharmacological inactivation of CB1 receptors in NAFLD exerts multiple beneficial effects, particularly due to the attenuation of hepatic oxidative/nitrosative stress parameters and significant reduction of proinflammatory cytokine production. However, further investigations regarding precise mechanisms by which CB1 blockade influences the reduction of hepatic oxidative/nitrosative stress and inflammation are required before moving toward the clinical phase of the investigation.


Asunto(s)
Estrés Nitrosativo , Enfermedad del Hígado Graso no Alcohólico , Estrés Oxidativo , Receptor Cannabinoide CB1/antagonistas & inhibidores , Humanos , Inflamación/metabolismo , Hígado/metabolismo , Hígado/fisiopatología , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo
4.
Microsc Microanal ; 26(5): 997-1006, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32782033

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) represents a hepatic manifestation of metabolic syndrome. The aim of this study was to examine the effect of betaine on ultrastructural changes in the mouse liver with methionine- and choline-deficient (MCD) diet-induced NAFLD. Male C57BL/6 mice were divided into groups: Control-fed with standard chow, BET-standard chow supplemented with betaine (1.5% w/v drinking water), MCD-fed with MCD diet, and MCD + BET-MCD diet with betaine supplementation for 6 weeks. Liver samples were taken for pathohistology and transmission electron microscopy. The MCD diet-induced steatosis, inflammation, and balloon-altered hepatocytes were alleviated by betaine. MCD diet induced an increase in mitochondrial size versus the control group (p < 0.01), which was decreased in the betaine-treated group. In the MCD diet-fed group, the total mitochondrial count decreased versus the control group (p < 0.01), while it increased in the MCD + BET group versus MCD (p < 0.01). Electron microscopy showed an increase in the number of autophagosomes in the MCD and MCD + BET group versus control, and a significant difference in autophagosomes number was detected in the MCD + BET group by comparison with the MCD diet-treated group (p < 0.05). Betaine decreases the number of enlarged mitochondria, alleviates steatosis, and increases the number of autophagosomes in the liver of mice with NAFLD.


Asunto(s)
Betaína/farmacología , Colina/metabolismo , Dieta , Suplementos Dietéticos , Hígado/efectos de los fármacos , Hígado/ultraestructura , Metionina/deficiencia , Enfermedad del Hígado Graso no Alcohólico/patología , Animales , Colágeno , Modelos Animales de Enfermedad , Hepatocitos/efectos de los fármacos , Hepatocitos/ultraestructura , Masculino , Ratones , Ratones Endogámicos C57BL
5.
Eur J Pharmacol ; 848: 39-48, 2019 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-30689995

RESUMEN

We examined the effects of betaine, an endogenous and dietary methyl donor essential for the methionine-homocysteine cycle, on oxidative stress, inflammation, apoptosis, and autophagy in methionine-choline deficient diet (MCD)-induced non-alcoholic fatty liver disease (NAFLD). Male C57BL/6 mice received standard chow (control), standard chow and betaine (1.5% w/v in drinking water), MCD, or MCD and betaine. After six weeks, serum and liver samples were collected for analysis. Betaine reduced MCD-induced increase in liver transaminases and inflammatory infiltration, as well as hepatosteatosis and serum levels of low-density lipoprotein, while it increased that of high-density lipoprotein. MCD-induced hepatic production of reactive oxygen and nitrogen species was significantly reduced by betaine, which also improved liver antioxidative defense by increasing glutathione content and superoxide-dismutase, catalase, glutathione peroxidase, and paraoxonase activity. Betaine reduced the liver expression of proinflammatory cytokines tumor necrosis factor and interleukin-6, as well as that of proapoptotic mediator Bax, while increasing the levels of anti-inflammatory cytokine interleukin-10 and antiapoptotic Bcl-2 in MCD-fed mice. In addition, betaine increased the expression of autophagy activators beclin 1, autophagy-related (Atg)4 and Atg5, as well as the presence of autophagic vesicles and degradation of autophagic target sequestosome 1/p62 in the liver of NAFLD mice. The observed effects of betaine coincided with the increase in the hepatic phosphorylation of mammalian target of rapamycin (mTOR) and its activator Akt. In conclusion, the beneficial effect of betaine in MCD-induced NAFLD is associated with the reduction of liver oxidative stress, inflammation, and apoptosis, and the increase in cytoprotective Akt/mTOR signaling and autophagy.


Asunto(s)
Betaína/uso terapéutico , Deficiencia de Colina/metabolismo , Metionina/deficiencia , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Estrés Oxidativo/fisiología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Animales , Autofagia/efectos de los fármacos , Autofagia/fisiología , Betaína/farmacología , Deficiencia de Colina/complicaciones , Fármacos Gastrointestinales/farmacología , Fármacos Gastrointestinales/uso terapéutico , Inflamación/tratamiento farmacológico , Inflamación/etiología , Inflamación/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/etiología , Estrés Oxidativo/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología
6.
Can J Physiol Pharmacol ; 97(2): 120-129, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30673308

RESUMEN

In high-fat diet (HFD) induced nonalcoholic fatty liver disease (NAFLD), there is an increase in the endocannabinoid system activity, which significantly contributes to steatosis development. The aim of our study was to investigate the effects of cannabinoid receptor type 1 blockade on adipokine and proinflammatory cytokine content in adipose and hepatic tissue in mice with NAFLD. Male mice C57BL/6 were divided into a control group fed with a control diet for 20 weeks (C, n = 6) a group fed with a HFD for 20 weeks (HF, n = 6), a group fed with a control diet and treated with rimonabant after 18 weeks (R, n = 9), and a group fed with HFD and treated with rimonabant after 18 weeks (HFR, n = 10). Rimonabant significantly decreased leptin, resistin, apelin, visfatin, interleukin 6 (IL-6), and interferon-γ (IFN-γ) concentration in subcutaneous and visceral adipose tissue in the HFR group compared to the HF group (p < 0.01). Rimonabant reduced hepatic IL-6 and IFN-γ concentration as well as plasma glucose and insulin concentration and the homeostatic model assessment index in the HFR group compared to the HF group (p < 0.01). It can be concluded that the potential usefulness of CB1 blockade in the treatment of HFD-induced NAFLD is due to modulation of the adipokine profile and proinflammatory cytokines in both adipose tissues and liver as well as glucose metabolism.


Asunto(s)
Antagonistas de Receptores de Cannabinoides/farmacología , Citocinas/metabolismo , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Receptor Cannabinoide CB1/antagonistas & inhibidores , Rimonabant/farmacología , Adipoquinas/metabolismo , Tejido Adiposo/efectos de los fármacos , Tejido Adiposo/metabolismo , Animales , Glucemia/efectos de los fármacos , Antagonistas de Receptores de Cannabinoides/uso terapéutico , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Glucosa/metabolismo , Humanos , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/sangre , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/patología , Rimonabant/uso terapéutico
7.
Microsc Microanal ; 24(2): 132-138, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29350612

RESUMEN

The effects of betaine on hepatocytes chromatin architecture changes were examined by using fractal and gray-level co-occurrence matrix (GLCM) analysis in methionine/choline-deficient (MCD) diet-induced, nonalcoholic fatty liver disease (NAFLD). Male C57BL/6 mice were divided into groups: (1) Control: standard diet; (2) BET: standard diet and betaine supplementation through drinking water (solution 1.5%); (3) MCD group: MCD diet for 6 weeks; (4) MCD+BET: fed with MCD diet + betaine for 6 weeks. Liver tissue was collected for histopathology, immunohistochemistry, and determination of fractal dimension and GLCM parameters. MCD diet induced diffuse micro- and macrovesicular steatosis accompanied with increased Ki67-positive hepatocyte nuclei. Steatosis and Ki67 immunopositivity were less prominent in the MCD+BET group compared with the MCD group. Angular second moment (ASM) and inverse difference moment (IDM) (textural homogeneity markers) were significantly increased in the MCD+BET group versus the MCD group (p<0.001), even though no difference between the MCD and the control group was evident. Heterogeneity parameters, contrast, and correlation were significantly increased in the MCD group versus the control (p<0.001). On the other hand, betaine treatment significantly reduced correlation, contrast, and entropy compared with the MCD group (p<0.001). Betaine attenuated MCD diet-induced NAFLD by reducing fat accumulation and inhibiting hepatocyte proliferation. Betaine supplementation increased nuclear homogeneity and chromatin complexity with reduction of entropy, contrast, and correlation.


Asunto(s)
Betaína/administración & dosificación , Núcleo Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Cromatina/efectos de los fármacos , Fármacos Gastrointestinales/administración & dosificación , Hepatocitos/efectos de los fármacos , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Animales , Modelos Animales de Enfermedad , Hepatocitos/fisiología , Histocitoquímica , Inmunohistoquímica , Antígeno Ki-67/análisis , Hígado/patología , Masculino , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/patología
8.
Chem Phys Lipids ; 204: 85-93, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28363784

RESUMEN

We used rimonabant to investigate the role of CB1 receptor on hepatic FFAs profile during NAFLD. Male mice C57BL/6 were divided into: control group fed with control diet 20 weeks (C; n=6); group fed with HFD 20 weeks (HF; n=6); group fed with control diet and treated with rimonabant after 18 weeks (R; n=9); group fed with HFD and treated with rimonabant after 18 weeks (HFR; n=10). Rimonabant (10mg/kg) was administered daily to HFR and R group by oral gavage. Rimonabant decreased liver palmitic acid proportion in HFR group compared to HF group (p<0.05). Liver stearic and oleic acid proportions were decreased in R group compared to control (p<0.01 respectively). Rimonabant increased liver linoleic and arachidonic acid proportions in HFR group compared to HF group (p<0.01 respectively). CB1 blockade may be useful in the treatment of HFD-induced NAFLD due to modulation of plasma lipid and hepatic FFA profile.


Asunto(s)
Antagonistas de Receptores de Cannabinoides/farmacología , Ácidos Grasos no Esterificados/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Piperidinas/farmacología , Pirazoles/farmacología , Receptor Cannabinoide CB2/antagonistas & inhibidores , Administración Oral , Animales , Antagonistas de Receptores de Cannabinoides/administración & dosificación , Dieta Alta en Grasa , Masculino , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/inducido químicamente , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Piperidinas/administración & dosificación , Pirazoles/administración & dosificación , Receptor Cannabinoide CB2/metabolismo , Rimonabant
9.
Gen Physiol Biophys ; 35(3): 363-70, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27174897

RESUMEN

Choline and methionine are precursors of acetylcholine, whose hydrolysis is catalyzed by acetylcholinesterase (AChE). Considering the possibility of their common deficiency, we investigated the influence of methionine-choline deprivation on AChE activity in liver and various brain regions (hypothalamus, hippocampus, cerebral cortex and striatum) in mice fed with methionine-choline deficient (MCD) diet. Male C57BL/6 mice (n = 28) were randomly and equally divided into following groups: control group fed with standard diet for 6 weeks (C) and groups fed with MCD diet for 2 weeks (MCD2), 4 weeks (MCD4) and for 6 weeks (MCD6). After the diet, mice were sacrificied and AChE activity in liver and brain was determined spectrophotometrically. Hepatic AChE activity was higher in MCD2, MCD4 and MCD6 compared to control (p < 0.01), with most prominent increase in MCD6. AChE activity in hypothalamus was higher in MCD4 and MCD6 vs. control (p < 0.05 and p < 0.01, respectively), as well as in MCD6 compared to MCD4 (p < 0.01). In hippocampus, increase in AChE activity was shown in MCD6 compared to control (p < 0.01). In cortex and striatum, increase in AChE activity was noted in MCD6 compared to control (p < 0.05). Our findings indicate the increase of hepatic and brain AChE activity in mice caused by methionine-choline deprivation.


Asunto(s)
Acetilcolinesterasa/metabolismo , Encéfalo/enzimología , Deficiencia de Colina/metabolismo , Hígado/enzimología , Metionina/deficiencia , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Animales , Activación Enzimática , Masculino , Ratones , Ratones Endogámicos C57BL , Distribución Tisular
10.
Oxid Med Cell Longev ; 2015: 842108, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26078820

RESUMEN

The present study deals with the effects of rimonabant on oxidative/nitrosative stress in high diet- (HFD-) induced experimental nonalcoholic fatty liver disease (NAFLD). Male mice C57BL/6 were divided into the following groups: control group fed with control diet for 20 weeks (C; n = 6); group fed with HFD for 20 weeks (HF; n = 6); group fed with standard diet and treated with rimonabant after 18 weeks (R; n = 9); group fed with HFD and treated with rimonabant after 18 weeks (HFR; n = 10). Daily dose of rimonabant (10 mg/kg) was administered to HFR and R group by oral gavage for two weeks. Treatment induced a decrease in hepatic malondialdehyde concentration in HFR group compared to HF group (P < 0.01). The concentration of nitrites + nitrates in liver was decreased in HFR group compared to HF group (P < 0.01). Liver content of reduced glutathione was higher in HFR group compared to HF group (P < 0.01). Total liver superoxide dismutase activity in HFR group was decreased in comparison with HF group (P < 0.01). It was found that rimonabant may influence hepatic iron, zinc, copper, and manganese status. Our study indicates potential usefulness of cannabinoid receptor type 1 blockade in the treatment of HFD-induced NAFLD.


Asunto(s)
Antagonistas de Receptores de Cannabinoides/farmacología , Enfermedad del Hígado Graso no Alcohólico/patología , Estrés Oxidativo/efectos de los fármacos , Piperidinas/farmacología , Pirazoles/farmacología , Animales , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Glutatión/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Masculino , Malondialdehído/metabolismo , Metales/metabolismo , Ratones , Ratones Endogámicos C57BL , Nitratos/metabolismo , Nitritos/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Rimonabant , Superóxido Dismutasa/metabolismo
11.
Exp Biol Med (Maywood) ; 240(4): 418-25, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25193852

RESUMEN

Deficiency in methionine or choline can induce oxidative stress in various organs such as liver, kidney, heart, and brain. This study was to examine the effects of alpha-lipoic acid (LA) on oxidative stress induced by methionine and choline deficiency (MCD) in several brain structures. Male mice C57BL/6 (n = 28) were divided into four groups: (1) control - continuously fed with standard chow; (2) LA - fed with standard chow and receiving LA; (3) MCD2 - fed with MCD diet for two weeks, and (4) MCD2+LA - fed with MCD diet for two weeks and receiving LA (100 mg/kg/day intraperitonealy [i.p.]). Brain tissue (cortex, hypothalamus, striatum and hippocampus) was taken for determination of oxidative stress parameters. MCD diet induced a significant increase in malondialdehyde and NOx concentration in all brain regions, while LA restored their content to normal values. Similar to this, in MCD2 group, activity of total SOD, MnSOD, and Cu/ZnSOD was reduced by MCD diet, while LA treatment improved their activities in all brain structures. Besides, in MCD2 group a decrease in catalase activity in cortex and GSH content in hypothalamus was evident, while LA treatment induced an increase in catalase activity in cortex and striatum and GSH content in hypothalamus. LA treatment can significantly reduce lipid peroxidation and nitrosative stress, caused by MCD diet, in all brain regions by restoring antioxidant enzymes activities, predominantly total SOD, MnSOD, and Cu/ZnSOD, and to a lesser extent by modulating catalase activity and GSH content. LA supplementation may be used in order to prevent brain oxidative injury induced by methionine and choline deficiency.


Asunto(s)
Encéfalo/metabolismo , Corteza Cerebral/metabolismo , Deficiencia de Colina/metabolismo , Cuerpo Estriado/metabolismo , Hipotálamo/metabolismo , Metionina/deficiencia , Estrés Oxidativo/efectos de los fármacos , Ácido Tióctico/farmacología , Animales , Catalasa/metabolismo , Corteza Cerebral/efectos de los fármacos , Cuerpo Estriado/efectos de los fármacos , Modelos Animales de Enfermedad , Glutatión/metabolismo , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Hipotálamo/efectos de los fármacos , Peroxidación de Lípido/efectos de los fármacos , Masculino , Malondialdehído/metabolismo , Metionina/metabolismo , Ratones , Ratones Endogámicos C57BL , Óxido Nítrico/metabolismo , Superóxido Dismutasa/metabolismo
12.
Arch Med Res ; 45(2): 116-24, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24480733

RESUMEN

BACKGROUND AND AIMS: Methionine-choline deficient (MCD) diet duration necessary for development of non-alcoholic fatty liver disease (NAFLD) and the dynamic of lipid profile and fatty acids are not completely established. The study examined dynamics and association between liver free fatty acids (FFA), serum lipid profile and liver morphological changes on MCD diet-induced NAFLD in mice. METHODS: Male C57BL/6 mice (n = 28) were divided into four groups (n = 7 per group): control: fed with standard chow, MCD diet-fed groups: 2, 4 or 6 weeks. After treatment, liver and blood samples were taken for histopathology, serum lipid profile, and liver FFA composition. RESULTS: Hepatic FFA profile showed a decrease in saturated acids, arachidonic and docosahexaenoic acid, whereas proportions of docosapentaenoic, oleic and linoleic acid were increased. Total cholesterol, HDL and triglycerides progressively decreased, whereas LDL level progressively increased. Focal fatty change in the liver appeared after 2 weeks, whereas diffuse fatty change with severe inflammation and ballooned hepatocytes were evident after 6 weeks. CONCLUSIONS: Six-week diet model may be appropriate for investigation of the role of lipotoxicity in the progression of NAFLD. Therefore, supplementation with n-3 polyunsaturated acid like DHA, rather than DPA, especially in the initial stage of fatty liver disease, may potentially have preventive effects and alleviate development of NAFLD/NASH and may also potentially reduce cardiovascular risk by moderating dyslipidemia.


Asunto(s)
Ácidos Grasos no Esterificados/metabolismo , Hígado Graso/metabolismo , Hígado Graso/patología , Lípidos/sangre , Hígado/metabolismo , Hígado/patología , Animales , Colina/administración & dosificación , Dieta , Modelos Animales de Enfermedad , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Hepatocitos/patología , Masculino , Metionina/deficiencia , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico , Factores de Riesgo , Factores de Tiempo
13.
J Med Food ; 17(2): 254-61, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24325457

RESUMEN

Development of nonalcoholic fatty liver disease (NAFLD) occurs through initial steatosis and subsequent oxidative stress. The aim of this study was to examine the effects of α-lipoic acid (LA) on methionine-choline deficient (MCD) diet-induced NAFLD in mice. Male C57BL/6 mice (n=21) were divided into three groups (n=7 per group): (1) control fed with standard chow, (2) MCD2 group--fed with MCD diet for 2 weeks, and (3) MCD2+LA group--2 weeks on MCD receiving LA i.p. 100 mg/kg/day. After the treatment, liver samples were taken for pathohistology, oxidative stress parameters, antioxidative enzymes, and liver free fatty acid (FFA) composition. Mild microvesicular hepatic steatosis was found in MCD2 group, while it was reduced to single fat droplets evident in MCD2+LA group. Lipid peroxidation and nitrosative stress were increased by MCD diet, while LA administration induced a decrease in liver malondialdehyde and nitrates+nitrites level. Similary, LA improved liver antioxidative capacity by increasing total superoxide dismutase (tSOD), manganese SOD (MnSOD), and copper/zinc-SOD (Cu/ZnSOD) activity as well as glutathione (GSH) content. Liver FFA profile has shown a significant decrease in saturated acids, arachidonic, and docosahexaenoic acid (DHA), while LA treatment increased their proportions. It can be concluded that LA ameliorates lipid peroxidation and nitrosative stress in MCD diet-induced hepatic steatosis through an increase in SOD activity and GSH level. In addition, LA increases the proportion of palmitic, stearic, arachidonic, and DHA in the fatty liver. An increase in DHA may be a potential mechanism of anti-inflammatory and antioxidant effects of LA in MCD diet-induced NAFLD.


Asunto(s)
Colina/efectos adversos , Dieta/efectos adversos , Ácidos Grasos no Esterificados/química , Hígado Graso/tratamiento farmacológico , Hígado Graso/metabolismo , Metionina/efectos adversos , Ácido Tióctico/administración & dosificación , Animales , Colina/análisis , Ácidos Grasos no Esterificados/metabolismo , Humanos , Peroxidación de Lípido , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Metionina/análisis , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico , Estrés Oxidativo/efectos de los fármacos
14.
Exp Biol Med (Maywood) ; 238(12): 1396-405, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24157589

RESUMEN

Caloric restriction (CR) prevents or delays a wide range of aging-related diseases possibly through alleviation of oxidative stress. The aim of our study was to examine the effect of CR on oxidative and nitrosative cardiac damage in rats, induced by acute ethanol intoxication. Male Wistar rats were divided into following groups: control; calorie-restricted groups with intake of 60-70% (CR60-70) and 40-50% of daily energy needs (CR40-50); ethanol-treated group (E); calorie-restricted, ethanol-treated groups (CR60-70 + E, CR40-50 + E). Ethanol was administered in five doses of 2 g/kg every 12 h, while the duration of CR was five weeks before ethanol treatment. Malondialdehyde level was significantly lower in CR60-70 + E and significantly higher in CR40-50 + E vs. control. Nitrite and nitrate level was significantly higher in CR40-50 + E compared to control group. Activity of total superoxide dismutase (SOD) and its isoenzyme, copper/zinc-SOD (Cu/ZnSOD), was significantly higher in CR60-70 + E and lower in CR40-50 + E vs. control. Activity of manganese-SOD (MnSOD), that is also SOD isoenzyme, was significantly lower in CR40-50 + E compared to control group. Plasma content of sulfhydryl (SH) groups was significantly higher in CR60-70 group vs. control. Plasma concentration of total cholesterol, triacylglycerol, low-density lipoproteins and high-density lipoproteins was significantly lower in CR60-70 group compared to control values. Food restriction to 60-70% of daily energy needs has a protective effect on acute ethanol-induced oxidative and nitrosative cardiac damage, at least partly due to alleviation of ethanol-induced decrease in SOD activity, while restriction to 40-50% of energy needs aggravates lipid peroxidation and nitrosative stress.


Asunto(s)
Restricción Calórica , Etanol/farmacología , Corazón/efectos de los fármacos , Lípidos/sangre , Animales , Relación Dosis-Respuesta a Droga , Peroxidación de Lípido/efectos de los fármacos , Masculino , Malondialdehído/análisis , Miocardio/química , Miocardio/patología , Nitratos/análisis , Óxido Nítrico/análisis , Nitritos/análisis , Estrés Oxidativo/efectos de los fármacos , Ratas , Ratas Wistar , Compuestos de Sulfhidrilo/sangre , Superóxido Dismutasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...