Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros












Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38949746

RESUMEN

Parkinson's disease (PD), affecting millions of people worldwide and expected to impact 10 million by 2030, manifests a spectrum of motor and non-motor symptoms linked to the decline of dopaminergic neurons. Current therapies manage PD symptoms but lack efficacy in slowing disease progression, emphasizing the urgency for more effective treatments. Resveratrol (RSV), recognized for its neuroprotective and antioxidative properties, encounters challenges in clinical use for PD due to limited bioavailability. Researchers have investigated lipid-based nanoformulations, specifically solid lipid nanoparticles (SLNs), to enhance RSV stability. Oral drug delivery via SLNs faces obstacles, prompting exploration into transdermal delivery using SLNs integrated with microneedles (MNs) for improved patient compliance. In this study, an RSV-loaded SLNs (RSV -SLNs) incorporated into the MN patch was developed for transdermal RSV delivery to improve its stability and patient compliance. Characterization studies demonstrated favorable physical properties of SLNs with a sustained drug release profile of 78.36 ± 0.74%. The developed MNs exhibited mechanical robustness and skin penetration capabilities. Ex vivo permeation studies displayed substantial drug permeation of 68.39 ± 1.4% through the skin. In an in vivo pharmacokinetic study, the RSV-SLNs delivered through MNs exhibited a significant increase in Cmax, Tmax, and AUC0 - t values, alongside a reduced elimination rate in blood plasma in contrast to the administration of pure RSV via MNs. Moreover, an in vivo study showcased enhanced behavioral functioning and increased brain antioxidant levels in the treated animals. In-vivo skin irritation study revealed no signs of irritation till 24 h which permits long-term MNs application. Histopathological analysis showed notable changes in the brain regions of the rat, specifically the striatum and substantia nigra, after the completion of the treatment. Based on these findings, the development of an RSV-SLN loaded MNs (RSVSNLMP) patch presents a novel approach, with the potential to enhance the drug's efficiency, patient compliance, and therapeutic outcomes for PD, offering a promising avenue for advanced PD therapy.

2.
Cureus ; 16(5): e60131, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38868255

RESUMEN

This bibliometric study provides a comprehensive analysis of the burgeoning field of nanovaccine research, leveraging data sourced from Scopus and employing the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) flowchart for the meticulous screening, inclusion, and exclusion of relevant studies. Utilizing sophisticated bibliometric tools, such as Biblioshiny and CiteSpace, we dissected the expansive literature to unearth critical insights into the annual scientific output, identifying key contributors and pivotal publications that have shaped the domain. The analysis delineates the most influential authors, sources, and globally cited documents, offering a macroscopic view of the field's intellectual structure and growth trajectory. Trend topics and thematic mapping underscored the evolution of research foci, from fundamental immunological mechanisms to cutting-edge nanomaterial applications. Factorial analysis and keyword co-occurrence networks revealed the intricate associations and thematic concentrations within the literature. The study's robust methodology also pinpointed the keywords exhibiting the strongest citation bursts, signifying emergent areas of intense academic interest. Networks of cited authors illuminated collaborative patterns among scholars, while timeline network visualizations of country collaborations depicted the global interplay in nanovaccine development. Crucially, this study identified notable research gaps and practical implications, suggesting directions for future investigation and highlighting the translational potential of nanovaccines in public health and personalized medicine. This bibliometric investigation not only maps the current landscape but also charts a course for the trajectory of nanovaccine research, emphasizing its role as a cornerstone of innovative immunotherapeutic strategies.

3.
Cureus ; 16(4): e59128, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38803769

RESUMEN

The adoption of Electronic Health Records (EHRs) and the establishment of Health Information Exchange (HIE) systems have significantly transformed healthcare delivery and management. This study presents a comprehensive bibliometric analysis and visualization of the landscape surrounding EHRs and HIE to provide insights into the current state and emerging trends in this field. Leveraging advanced bibliometric methodologies, including co-citation analysis, keyword co-occurrence analysis, and network visualization techniques, we systematically map the scholarly literature spanning several decades. Our analysis reveals key thematic clusters, influential publications, prolific authors, and collaborative networks within the domain of EHRs and HIE. Furthermore, we identify significant research gaps and areas for future exploration, including interoperability challenges, privacy concerns, and the integration of emerging technologies such as artificial intelligence and blockchain. The findings of this study offer valuable insights for researchers, policymakers, and healthcare practitioners seeking to navigate and contribute to the ongoing evolution of EHRs and HIE systems, ultimately enhancing the quality, efficiency, and accessibility of healthcare services.

4.
Artículo en Inglés | MEDLINE | ID: mdl-38739152

RESUMEN

As peptide-based therapies gain recognition for their potential anti-cancer activity, cyclic peptides like Sansalvamide A, a marine-derived cyclic depsipeptide, have emerged as a potential anti-cancer agent due to their potent activity against various cancer types in preclinical studies. This review offers a comprehensive overview of Sansalvamide A, including its sources, structure-activity relationship, and semi-synthetic derivatives. The review also aims to outline the mechanisms through which Sansalvamide A and its analogs exert their anti-proliferative effects and to discuss the need for enhancements in pharmacokinetic profiles for better clinical utility. An extensive literature search was conducted, focusing on studies that detailed the anti-cancer activity of Sansalvamide A, its pharmacokinetics, and mechanistic pathways. Data from both in vitro and in vivo studies were collated and analyzed. Sansalvamide A and its analogs demonstrated significant anti-cancer activity across various cancer models, mediated through Hsp 90 inhibition, Topoisomerase inhibition, and G0/G1 cell cycle arrest. However, their pharmacokinetic properties were identified as a significant limitation, requiring improvement for effective clinical translation. Despite its notable anti-cancer effects, the utility of Sansalvamide A is currently limited by its pharmacokinetic characteristics. Therefore, while Sansalvamide A exhibits promise as an anti-cancer agent, there is a compelling need for further clinical and toxicological studies and optimization of its pharmacokinetic profile to fully exploit its therapeutic potential alongside modern cancer therapies.

5.
J Liposome Res ; : 1-18, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38591935

RESUMEN

The clinical use of selegiline hydrochloride in conventional dosage forms is to reduce the progression of Parkinson's disease (PD). However, its limited access to the brain, short half-life, and first-pass metabolism minimize brain uptake. Nano-based liposomes offer promising tools for brain-targeted delivery of therapeutics, especially intranasally administered cationic liposomes that target the brain region via the olfactory route and reduce biodistribution. In the present work, cationic liposomes encapsulated with selegiline hydrochloride were fabricated for intranasal administration against PD. The liposomes were initially optimized by Box Behnken design, and the selected run was coated with stearylamine to provide a cationic charge to the liposomes. The final coated liposomes, SH-LP3, demonstrated a minimum size of 173 ± 2.13 nm, an ideal zeta potential of +16 ± 1.98, and achieved a maximum entrapment efficiency of 40.14 ± 1.83%. Morphology analysis showed the spherical shape of liposomes in the size range of 100-200 nm. The in vitro cytotoxicity assay in SHSY5Y cell lines showed a significant decrease in toxicity, almost ten times less, compared to pure selegiline hydrochloride. Animal studies on rotenone-lesioned C57BL6 mice model for PD were performed to investigate the effect of intranasally administered liposomes. The SH-LP3 formulation exhibited remarkable effectiveness in relieving symptoms of PD. This extensive analysis emphasizes the possibility of intranasally administered SH-LP3 liposomes as a feasible treatment option for PD. The formulation not only delivers continuous drug release but also displays better safety and efficacy, providing a platform for additional studies and growth in the domain of PD treatment.

7.
RSC Adv ; 13(50): 35240-35250, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38053684

RESUMEN

Eighteen isatin-based benzyloxybenzaldehyde derivatives from three subseries, ISB, ISFB, and ISBB, were synthesized and their ability to inhibit monoamine oxidase (MAO) was evaluated. The inhibitory activity of all synthesized compounds was found to be more profound against MAO-B than MAO-A. Compound ISB1 most potently inhibited MAO-B with an IC50 of 0.124 ± 0.007 µM, ensued by ISFB1 (IC50 = 0.135 ± 0.002 µM). Compound ISFB1 most potently inhibited MAO-A with an IC50 of 0.678 ± 0.006 µM, ensued by ISBB3 (IC50 = 0.731 ± 0.028 µM), and had the highest selectivity index (SI) value (55.03). The three sub-parental compounds, ISB1, ISFB1, and ISBB1, had higher MAO-B inhibition than the other derivatives, indicating that the substitutions of the 5-H in the A-ring of isatin diminished the inhibition of MAO-A and MAO-B. Among these, ISB1 (para-benzyloxy group in the B-ring) displayed more significant MAO-B inhibition when compared to ISBB1 (meta-benzyloxy group in the B-ring). ISB1 and ISFB1 were identified to be competitive and reversible MAO-B inhibitors, having Ki values of 0.055 ± 0.010, and 0.069 ± 0.025 µM, respectively. Furthermore, in the parallel artificial membrane penetration assay, ISB1 and ISFB1 traversed the blood-brain barrier in the in vitro condition. Additionally, the current study found that ISB1 decreased rotenone-induced cell death in SH-SY5Y neuroblastoma cells. In docking and simulation studies, the hydrogen bonding formed by the imino nitrogen in ISB1 and the pi-pi stacking interaction of the phenyl ring in isatin significantly aided in the protein-ligand complex's stability, effectively inhibiting MAO-B. According to these observations, the MAO-B inhibitors ISB1 and ISFB1 were potent, selective, and reversible, making them conceivable therapies for neurological diseases.

8.
Int J Biol Macromol ; 244: 125374, 2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37330096

RESUMEN

Obesity is a clinical condition with rising popularity and detrimental impacts on human health. According to the World Health Organization, obesity is the sixth most common cause of death worldwide. It is challenging to combat obesity because medications that are successful in the clinical investigation have harmful side effects when administered orally. The conventional approaches for treating obesity primarily entail synthetic compounds and surgical techniques but possess severe adverse effects and recurrences. As a result, a safe and effective strategy to combat obesity must be initiated. Recent studies have shown that biological macromolecules of the carbohydrate class, such as cellulose, hyaluronic acid, and chitosan, can enhance the release and efficacy of medications for obesity but due to their short biological half-lives and poor oral bioavailability, their distribution rate is affected. This helps to comprehend the need for an effective therapeutic approach via a transdermal drug delivery system. This review focuses on the transdermal administration, utilizing cellulose, chitosan, and hyaluronic acid via microneedles, as it offers a promising solution to overcome existing therapy limitations in managing obesity and it also highlights how microneedles can effectively deliver therapeutic substances through the skin's outer layer, bypassing pain receptors and specifically targeting adipose tissue.


Asunto(s)
Quitosano , Piel , Humanos , Administración Cutánea , Ácido Hialurónico , Celulosa , Preparaciones Farmacéuticas , Sistemas de Liberación de Medicamentos/métodos
10.
Brain Sci ; 13(2)2023 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-36831756

RESUMEN

It is a very alarming situation for the globe because 55 million humans are estimated to be affected by Alzheimer's disease (AD) worldwide, and still it is increasing at the rapid speed of 10 million cases per year worldwide. This is an urgent reminder for better research and treatment due to the unavailability of a permanent medication for neurodegenerative disorders like AD. The lack of drugs for neurodegenerative disorder treatment is due to the complexity of the structure of the brain, mainly due to blood-brain barrier, because blood-brain drug molecules must enter the brain compartment. There are several novel and conventional formulation approaches that can be employed for the transportation of drug molecules to the target site in the brain, such as oral, intravenous, gene delivery, surgically implanted intraventricular catheter, nasal and liposomal hydrogels, and repurposing old drugs. A drug's lipophilicity influences metabolic activity in addition to membrane permeability because lipophilic substances have a higher affinity for metabolic enzymes. As a result, the higher a drug's lipophilicity is, the higher its permeability and metabolic clearance. AD is currently incurable, and the medicines available merely cure the symptoms or slow the illness's progression. In the next 20 years, the World Health Organization (WHO) predicts that neurodegenerative illnesses affecting motor function will become the second-leading cause of mortality. The current article provides a brief overview of recent advances in brain drug delivery for AD therapy.

11.
Environ Sci Pollut Res Int ; 30(18): 51782-51791, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36820973

RESUMEN

More research is needed to understand the benefits of environmentally safe and human-friendly herbal-based sunscreen agents against ultraviolet (UV) radiation. Because of the toxicity of synthetic chemicals in photoprotective agents, researchers were increasingly focusing on herbal photoprotective formulations. The photoprotective agent's skin retention can be considerably improved by forming solid lipid nanoparticles (SLN). The study's objective is to evaluate the photoprotective potential of sunscreen cream containing spinach (Spinacia oleracea)-loaded SLN. A solvent emulsification technique was used to develop the spinach-loaded SLN. The various characterization techniques of the developed SLN were performed. Out of all the formulations, the optimized one was fitted into cream and estimated for its photoprotective action. The images obtained from scanning electron microscopy (SEM) revealed the morphological characteristics of the prepared SLN. The sunscreen cream's viscosity, spreadability, extrudability, and release rate were within acceptable limits. The formulation's in vitro and in vivo sun protection factor (SPF) was reported to be 15.9 and 14.75, respectively. The results indicated that the prepared formulation possesses good photoprotective action. The accelerated stability tests were carried out with no noticeable changes in the parameters. Our work demonstrated the possibility of using spinach-loaded SLN as a photoprotective agent in cosmetic formulations.


Asunto(s)
Chenopodiaceae , Nanopartículas , Humanos , Protectores Solares/química , Nanopartículas/química , Factor de Protección Solar , Piel , Spinacia oleracea
12.
Ageing Res Rev ; 83: 101806, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36427765

RESUMEN

Neurodegenerative diseases are the most widely affected disease condition in an aging population. The treatment available reduces the elevated manifestations but is ineffective due to the drug's poor bioavailability, plasma stability, and permeability across the blood-brain barrier (BBB). Until now, no therapeutic compound has been able to stop the progression of neurodegenerative disease. Even the available therapeutic moiety manages it with possible adverse effects up to the later stage. Hence, phytobioactive compounds of plant origin offer effective treatment strategies against neurodegenerative diseases. The only difficulty of these phytobioactive compounds is permeability across the BBB. Engineered nanocarriers such as liposomes provide high lipid permeability across BBB. Liposomes have unique physicochemical properties that are widely investigated for their application in diagnosing and treating neurodegenerative diseases. The surface modification on liposomes by peptides, antibodies, and RNA aptamers offers receptor targeting. These brain-targeted approaches by liposomes improve the efficacy of phytoconstituents. Additional surface modification methods are utilized on liposomes, which increases the brain-targeted delivery of phytobioactive compounds. The marketing strategy of the liposomal delivery system is in its peak mode, where it has the potential to modify the existing therapy. This review will summarize the brain target liposomal delivery of phytobioactive compounds as a novel disease-modifying agent for treating neurodegenerative diseases.


Asunto(s)
Nanopartículas , Enfermedades Neurodegenerativas , Humanos , Anciano , Liposomas/uso terapéutico , Enfermedades Neurodegenerativas/tratamiento farmacológico , Sistemas de Liberación de Medicamentos , Nanopartículas/química , Nanopartículas/uso terapéutico , Barrera Hematoencefálica
13.
Front Oncol ; 12: 994155, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36330493

RESUMEN

Numerous naturally available phytochemicals have potential anti-cancer activities due to their vast structural diversity. Alkaloids have been extensively used in cancer treatment, especially lung cancers, among the plant-based compounds. However, their utilization is limited by their poor solubility, low bioavailability, and inadequacies such as lack of specificity to cancer cells and indiscriminate distribution in the tissues. Incorporating the alkaloids into nanoformulations can overcome the said limitations paving the way for effective delivery of the alkaloids to the site of action in sufficient concentrations, which is crucial in tumor targeting. Our review attempts to assess whether alkaloid nanoformulation can be an effective tool in lung cancer therapy. The mechanism of action of each alkaloid having potential is explored in great detail in the review. In general, Alkaloids suppress oncogenesis by modulating several signaling pathways involved in multiplication, cell cycle, and metastasis, making them significant component of many clinical anti-cancerous agents. The review also explores the future prospects of alkaloid nanoformulation in lung cancer. So, in conclusion, alkaloid based nanoformulation will emerge as a potential gamechanger in treating lung cancer in the near future.

15.
Curr Neuropharmacol ; 2022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-36237157

RESUMEN

Neurodegenerative disease (ND) is the fourth leading cause of death worldwide, with limited symptomatic therapies. Mitochondrial dysfunction is a major risk factor in the progression of ND and increases the generation of reactive oxygen species (ROS). Overexposure to these ROS induces apoptotic changes leading to neuronal cell death. Many studies have shown the prominent effect of phytobioactive compounds in managing mitochondrial dysfunctions associated with ND, mainly due to their antioxidant properties. Drug delivery to the brain is limited due to the presence of the blood-brain barrier (BBB), but effective drug concentration needs to reach the brain for the therapeutic action. Therefore, developing safe and effective strategies to enhance drug entry in the brain is required to establish ND's treatment. The microneedle-based drug delivery system is one of the effective non-invasive techniques for drug delivery through the transdermal route. Microneedles are micron-sized drug delivery needles that are self-administrable. They can penetrate through the stratum corneum skin layer without hitting pain receptors, allowing the phytobioactive compounds to be released directly into systemic circulation in a controlled manner. With all of the principles mentioned above, this review discusses microneedles as a versatile drug delivery carrier for phytobioactive compounds as a therapeutic potentiating agent for targeting mitochondrial dysfunction for the management of ND.

16.
Drug Resist Updat ; 64: 100865, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36099796

RESUMEN

Prostate cancer (PC) is the most prevalent male urogenital cancer worldwide. PC patients presenting an advanced or metastatic cancer succumb to the disease, even after therapeutic interventions including radiotherapy, surgery, androgen deprivation therapy (ADT), and chemotherapy. One of the hallmarks of PC is evading immune surveillance and chronic inflammation, which is a major challenge towards designing effective therapeutic formulations against PC. Chronic inflammation in PC is often characterized by tumor microenvironment alterations, epithelial-mesenchymal transition and extracellular matrix modifications. The inflammatory events are modulated by reactive nitrogen and oxygen species, inflammatory cytokines and chemokines. Major signaling pathways in PC includes androgen receptor, PI3K and NF-κB pathways and targeting these inter-linked pathways poses a major therapeutic challenge. Notably, many conventional treatments are clinically unsuccessful, due to lack of targetability and poor bioavailability of the therapeutics, untoward toxicity and multidrug resistance. The past decade witnessed an advancement of nanotechnology as an excellent therapeutic paradigm for PC therapy. Modern nanovectorization strategies such as stimuli-responsive and active PC targeting carriers offer controlled release patterns and superior anti-cancer effects. The current review initially describes the classification, inflammatory triggers and major inflammatory pathways of PC, various PC treatment strategies and their limitations. Subsequently, recent advancement in combinatorial nanotherapeutic approaches, which target PC inflammatory pathways, and the mechanism of action are discussed. Besides, the current clinical status and prospects of PC homing nanovectorization, and major challenges to be addressed towards the advancement PC therapy are also addressed.


Asunto(s)
Neoplasias de la Próstata , Receptores Androgénicos , Antagonistas de Andrógenos/uso terapéutico , Andrógenos/uso terapéutico , Citocinas , Preparaciones de Acción Retardada/uso terapéutico , Humanos , Inflamación/tratamiento farmacológico , Masculino , FN-kappa B , Nitrógeno/uso terapéutico , Oxígeno/uso terapéutico , Fosfatidilinositol 3-Quinasas/uso terapéutico , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Receptores Androgénicos/metabolismo , Receptores Androgénicos/uso terapéutico , Microambiente Tumoral
19.
Bioinorg Chem Appl ; 2022: 9150205, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35992047

RESUMEN

The demand for drug delivery systems (DDS) to treat Parkinson's disease (PD) is still high, and microneedle (MN) assisted transdermal DDS offers enormous potential. Herbal products for PD have been shown to have antioxidant effects in reducing dopaminergic neurons from degeneration. Here, we attempted to incorporate solid lipid nanoparticles (SLNs) of Bacopa monnieri into dissolvable microneedle arrays and evaluate its neuroprotective activity. The bloodless and painless microneedle arrays through the transdermal route deliver the drug across the blood-brain barrier at the desired concentration. The quality by design (QbD) approach was employed for optimizing the SLNs formulations. The mechanical strength, in vitro release studies, ex-vivo permeation investigation, skin irritation test, histopathological studies, biochemical studies, and behavioural tests SLNs loaded microneedle arrays were performed. The microneedle patches obtained were shown to be mechanically robust and were also found to be nonirritant with a decreased degree of bradykinesia, high motor coordination, and balance ability. Compared to systemic delivery systems, such an MN method can achieve a considerably lower effective dose and allow long-term home-based treatment.

20.
Front Oncol ; 12: 925379, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35903701

RESUMEN

There are more than two hundred fifty different types of cancers, that are diagnosed around the world. Prostate cancer is one of the suspicious type of cancer spreading very fast around the world, it is reported that in 2018, 29430 patients died of prostate cancer in the United State of America (USA), and hence it is expected that one out of nine men diagnosed with this severe disease during their lives. Medical science has identified cancer at several stages and indicated genes mutations involved in the cancer cell progressions. Genetic implications have been studied extensively in cancer cell growth. So most efficacious drug for prostate cancer is highly required just like other severe diseases for men. So nutraceutical companies are playing major role to manage cancer disease by the recommendation of best natural products around the world, most of these natural products are isolated from plant and mushrooms because they contain several chemoprotective agents, which could reduce the chances of development of cancer and protect the cells for further progression. Some nutraceutical supplements might activate the cytotoxic chemotherapeutic effects by the mechanism of cell cycle arrest, cell differentiation procedures and changes in the redox states, but in other, it also elevate the levels of effectiveness of chemotherapeutic mechanism and in results, cancer cell becomes less reactive to chemotherapy. In this review, we have highlighted the prostate cancer and importance of nutraceuticals for the control and management of prostate cancer, and the significance of nutraceuticals to cancer patients during chemotherapy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...