Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Methods Mol Biol ; 2153: 253-265, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32840785

RESUMEN

The precise organization of the genome inside the cell nucleus is vital to many cell functions including gene expression, cell division, and DNA repair. Here we describe a method to measure pairing of DNA loci during homologous recombination (HR) at a site-specific double-strand break (DSB) in Saccharomyces cerevisiae. This method utilizes a chromosome tagging system in diploid yeast cells to visualize both the DNA at the break site and the homologous DNA that serves as a repair template. DNA repair products are confirmed in parallel by genomic blot. This visualization method provides insight into the physical contact that occurs between homologous loci during HR and correlates physical interaction with the timing of DNA repair.


Asunto(s)
Cromosomas Fúngicos/genética , Reparación del ADN por Recombinación , Saccharomyces cerevisiae/genética , Núcleo Celular/genética , Emparejamiento Cromosómico , Roturas del ADN de Doble Cadena , Microscopía Fluorescente
2.
Mol Biol Cell ; 30(21): 2620-2625, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31483739

RESUMEN

During S phase in Saccharomyces cerevisiae, chromosomal loci become mobile in response to DNA double-strand breaks both at the break site (local mobility) and throughout the nucleus (global mobility). Increased nuclear exploration is regulated by the recombination machinery and the DNA damage checkpoint and is likely an important aspect of homology search. While mobility in response to DNA damage has been studied extensively in S phase, the response in interphase has not, and the question of whether homologous recombination proceeds to completion in G1 phase remains controversial. Here, we find that global mobility is triggered in G1 phase. As in S phase, global mobility in G1 phase is controlled by the DNA damage checkpoint and the Rad51 recombinase. Interestingly, despite the restriction of Rad52 mediator foci to S phase, Rad51 foci form at high levels in G1 phase. Together, these observations indicate that the recombination and checkpoint machineries promote global mobility in G1 phase, supporting the notion that recombination can occur in interphase diploids.


Asunto(s)
Núcleo Celular/genética , Cromosomas Fúngicos/genética , Daño del ADN , Fase G1/genética , Saccharomyces cerevisiae/genética , Núcleo Celular/metabolismo , Roturas del ADN de Doble Cadena , Reparación del ADN/genética , Recombinación Homóloga , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismo , Proteína Recombinante y Reparadora de ADN Rad52/genética , Proteína Recombinante y Reparadora de ADN Rad52/metabolismo , Fase S/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
Cell Cycle ; 11(19): 3656-65, 2012 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-22935709

RESUMEN

S-phase and DNA damage promote increased ribonucleotide reductase (RNR) activity. Translation of RNR1 has been linked to the wobble uridine modifying enzyme tRNA methyltransferase 9 (Trm9). We predicted that changes in tRNA modification would translationally regulate RNR1 after DNA damage to promote cell cycle progression. In support, we demonstrate that the Trm9-dependent tRNA modification 5-methoxycarbonylmethyluridine (mcm(5)U) is increased in hydroxyurea (HU)-induced S-phase cells, relative to G(1) and G(2), and that mcm(5)U is one of 16 tRNA modifications whose levels oscillate during the cell cycle. Codon-reporter data matches the mcm(5)U increase to Trm9 and the efficient translation of AGA codons and RNR1. Further, we show that in trm9Δ cells reduced Rnr1 protein levels cause delayed transition into S-phase after damage. Codon re-engineering of RNR1 increased the number of trm9Δ cells that have transitioned into S-phase 1 h after DNA damage and that have increased Rnr1 protein levels, similar to that of wild-type cells expressing native RNR1. Our data supports a model in which codon usage and tRNA modification are regulatory components of the DNA damage response, with both playing vital roles in cell cycle progression.


Asunto(s)
Ciclo Celular/genética , Codón/genética , Daño del ADN/genética , Genes Fúngicos/genética , ARN de Transferencia/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Biocatálisis , Fase G1/genética , Modelos Biológicos , Ribonucleótido Reductasas/metabolismo , Fase S/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , ARNt Metiltransferasas/metabolismo
4.
Genomics ; 97(3): 133-47, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21195161

RESUMEN

Cellular responses to DNA damage can prevent mutations and death. In this study, we have used high throughput screens and developed a comparative genomic approach, termed Functionome mapping, to discover conserved responses to UVC-damage. Functionome mapping uses gene ontology (GO) information to link proteins with similar biological functions from different organisms, and we have used it to compare 303, 311 and 288 UVC-toxicity modulating proteins from Escherichia coli, Schizosaccharomyces pombe and Saccharomyces cerevisiae, respectively. We have demonstrated that all three organisms use DNA repair, translation and aerobic respiration associated processes to modulate the toxicity of UVC, with these last two categories highlighting the importance of ribosomal proteins and electron transport machinery. Our study has demonstrated that comparative genomic approaches can be used to identify conserved responses to damage, and suggest roles for translational machinery and components of energy metabolism in optimizing the DNA damage response.


Asunto(s)
Respiración de la Célula/genética , Daño del ADN/genética , Reparación del ADN/genética , Biosíntesis de Proteínas/genética , Proteínas/genética , Tolerancia a Radiación/genética , Rayos Ultravioleta , Escherichia coli/genética , Escherichia coli/efectos de la radiación , Genómica/métodos , Ensayos Analíticos de Alto Rendimiento , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/efectos de la radiación , Schizosaccharomyces/genética , Schizosaccharomyces/efectos de la radiación , Eliminación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...