Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Mol Biol ; : 168797, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39303764

RESUMEN

StkP, the Ser/Thr protein kinase of the major human pathogen Streptococcus pneumoniae, monitors cell wall signals and regulates growth and division in response. In vivo, StkP interacts with GpsB, a cell division protein required for septal ring formation and closure, that affects StkP-dependent phosphorylation. Here, we report that although StkP has basal intrinsic kinase activity, GpsB promotes efficient autophosphorylation of StkP and phosphorylation of StkP substrates. Phosphoproteomic analyzes showed that GpsB is phosphorylated at several Ser and Thr residues. We confirmed that StkP directly phosphorylates GpsB in vitro and in vivo, with T79 and T83 being the major phosphorylation sites. In vitro, phosphoablative GpsB substitutions had a lower potential to stimulate StkP activity, whereas phosphomimetic substitutions were functional in terms of StkP activation. In vivo, substitutions of GpsB phosphoacceptor residues, either phosphoablative or mimetic, had a negative effect on GpsB function, resulting in reduced StkP-dependent phosphorylation and impaired cell division. The bacterial two-hybrid assay and co-immunoprecipitation of GpsB from cells with differentially active StkP indicated that increased phosphorylation of GpsB resulted in a more efficient interaction of GpsB with StkP. Our data suggest that GpsB acts as an adaptor that directly promotes StkP activity by mediating interactions within the StkP signaling hub, ensuring StkP recruitment into the complex and substrate specificity. We present a model that interaction of StkP with GpsB and its phosphorylation and dephosphorylation dynamically modulate kinase activity during exponential growth and under cell wall stress of S. pneumoniae, ensuring the proper functioning of the StkP signaling pathway.

2.
Mol Microbiol ; 120(6): 805-810, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38012814

RESUMEN

Regulation of the first committed step of peptidoglycan precursor synthesis by MurA-enzyme homologs has recently taken center stage in many different bacteria. In different low-GC Gram-positive bacteria, regulation of this step has been shown to be regulated by phosphorylation of homologs of the IreB/ReoM regulatory protein by PASTA-domain Ser/Thr-protein kinases. In this issue, Mascari, Little, and Kristich determine this regulatory pathway and its links to resistance to cephalosporin ß-lactam antibiotics in the major human pathogen, Enterococcus faecalis (Efa). Unbiased genetic selections identified MurAA (MurA-family homolog) as the downstream target of IreB regulation in the absence of the IreK Ser/Thr-protein kinase. Physiological and biochemical approaches, including determination of MICs to ceftriaxone, Western blotting of MurAA cellular amounts, isotope incorporation into peptidoglycan sacculi, and thermal-shift binding assays of purified proteins, demonstrated that unphosphorylated IreB, together with proteins MurAB (MurZ-family homolog), and ReoY(Efa) negatively regulate MurAA stability and cellular amount by the ClpCP protease. Importantly, this paper supports the idea that ceftriaxone stimulates phosphorylation of IreB, which leads to increased cellular MurAA amount and precursor pathway flux required for E. faecalis cephalosporin resistance. Overall, findings in this paper significantly contribute to understanding variations of this central regulatory pathway in other low-GC Gram-positive bacteria.


Asunto(s)
Ceftriaxona , Enterococcus , Humanos , Fosforilación , Enterococcus/metabolismo , Peptidoglicano/metabolismo , Enterococcus faecalis/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
3.
Mol Microbiol ; 120(3): 351-383, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37452010

RESUMEN

GpsB links peptidoglycan synthases to other proteins that determine the shape of the respiratory pathogen Streptococcus pneumoniae (pneumococcus; Spn) and other low-GC Gram-positive bacteria. GpsB is also required for phosphorylation of proteins by the essential StkP(Spn) Ser/Thr protein kinase. Here we report three classes of frequently arising chromosomal duplications (≈21-176 genes) containing murZ (MurZ-family homolog of MurA) or murA that suppress ΔgpsB or ΔstkP. These duplications arose from three different repeated sequences and demonstrate the facility of pneumococcus to modulate gene dosage of numerous genes. Overproduction of MurZ or MurA alone or overproduction of MurZ caused by ΔkhpAB mutations suppressed ΔgpsB or ΔstkP phenotypes to varying extents. ΔgpsB and ΔstkP were also suppressed by MurZ amino-acid changes distant from the active site, including one in commonly studied laboratory strains, and by truncation or deletion of the homolog of IreB(ReoM). Unlike in other Gram-positive bacteria, MurZ is predominant to MurA in pneumococcal cells. However, ΔgpsB and ΔstkP were not suppressed by ΔclpCP, which did not alter MurZ or MurA amounts. These results support a model in which regulation of MurZ and MurA activity, likely by IreB(Spn), is the only essential requirement for StkP-mediated protein phosphorylation in exponentially growing D39 pneumococcal cells.


Asunto(s)
Proteínas Bacterianas , Streptococcus pneumoniae , Fosforilación , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , División Celular , Mutación
4.
bioRxiv ; 2023 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-37034771

RESUMEN

GpsB links peptidoglycan synthases to other proteins that determine the shape of the respiratory pathogen Streptococcus pneumoniae (pneumococcus; Spn ) and other low-GC Gram-positive bacteria. GpsB is also required for phosphorylation of proteins by the essential StkP( Spn ) Ser/Thr protein kinase. Here we report three classes of frequently arising chromosomal duplications (≈21-176 genes) containing murZ (MurZ-family homolog of MurA) or murA that suppress Δ gpsB or Δ stkP . These duplications arose from three different repeated sequences and demonstrate the facility of pneumococcus to modulate gene dosage of numerous genes. Overproduction of MurZ or MurA alone or overexpression of MurZ caused by Δ khpAB mutations suppressed Δ gpsB or Δ stkP phenotypes to varying extents. Δ gpsB and Δ stkP were also suppressed by MurZ amino-acid changes distant from the active site, including one in commonly studied laboratory strains, and by truncation or deletion of the homolog of IreB(ReoM). Unlike in other Gram-positive bacteria, MurZ is predominant to MurA in pneumococcal cells. However, Δ gpsB and Δ stkP were not suppressed by Δ clpCP , which did not alter MurZ or MurA amounts. These results support a model in which regulation of MurZ and MurA activity, likely by IreB( Spn ), is the only essential requirement for protein phosphorylation in exponentially growing D39 pneumococcal cells.

5.
Mol Microbiol ; 118(4): 336-368, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36001060

RESUMEN

RodZ of rod-shaped bacteria functions to link MreB filaments to the Rod peptidoglycan (PG) synthase complex that moves circumferentially perpendicular to the long cell axis, creating hoop-like sidewall PG. Ovoid-shaped bacteria, such as Streptococcus pneumoniae (pneumococcus; Spn) that lack MreB, use a different modality for peripheral PG elongation that emanates from the midcell of dividing cells. Yet, S. pneumoniae encodes a RodZ homolog similar to RodZ in rod-shaped bacteria. We show here that the helix-turn-helix and transmembrane domains of RodZ(Spn) are essential for growth at 37°C. ΔrodZ mutations are suppressed by Δpbp1a, mpgA(Y488D), and ΔkhpA mutations that suppress ΔmreC, but not ΔcozE. Consistent with a role in PG elongation, RodZ(Spn) co-localizes with MreC and aPBP1a throughout the cell cycle and forms complexes and interacts with PG elongasome proteins and regulators. Depletion of RodZ(Spn) results in aberrantly shaped, non-growing cells and mislocalization of elongasome proteins MreC, PBP2b, and RodA. Moreover, Tn-seq reveals that RodZ(Spn), but not MreCD(Spn), displays a specific synthetic-viable genetic relationship with aPBP1b, whose function is unknown. We conclude that RodZ(Spn) acts as a scaffolding protein required for elongasome assembly and function and that aPBP1b, like aPBP1a, plays a role in elongasome regulation and possibly peripheral PG synthesis.


Asunto(s)
Peptidoglicano , Streptococcus pneumoniae , Peptidoglicano/metabolismo , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Pared Celular/metabolismo , División Celular/genética
6.
J Bacteriol ; 203(13): e0060220, 2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-33875543

RESUMEN

Capsular polysaccharide (CPS) is a major virulence determinant for many human-pathogenic bacteria. Although the essential functional roles for CPS in bacterial virulence have been established, knowledge of how CPS production is regulated remains limited. Streptococcus pneumoniae (pneumococcus) CPS expression levels and overall thickness change in response to available oxygen and carbohydrate. These nutrients in addition to transition metal ions can vary significantly between host environmental niches and infection stage. Since the pneumococcus must modulate CPS expression among various host niches during disease progression, we examined the impact of the nutritional transition metal availability of manganese (Mn) and zinc (Zn) on CPS production. We demonstrate that increased Mn/Zn ratios increase CPS production via Mn-dependent activation of the phosphoglucomutase Pgm, an enzyme that functions at the branch point between glycolysis and the CPS biosynthetic pathway in a transcription-independent manner. Furthermore, we find that the downstream CPS protein CpsB, an Mn-dependent phosphatase, does not promote aberrant dephosphorylation of its target capsule-tyrosine kinase CpsD during Mn stress. Together, these data reveal a direct role for cellular Mn/Zn ratios in the regulation of CPS biosynthesis via the direct activation of Pgm. We propose a multilayer mechanism used by the pneumococcus in regulating CPS levels across various host niches. IMPORTANCE Evolving evidence strongly indicates that maintenance of metal homeostasis is essential for establishing colonization and continued growth of bacterial pathogens in the vertebrate host. In this study, we demonstrate the impact of cellular manganese/zinc (Mn/Zn) ratios on bacterial capsular polysaccharide (CPS) production, an important virulence determinant of many human-pathogenic bacteria, including Streptococcus pneumoniae. We show that higher Mn/Zn ratios increase CPS production via the Mn-dependent activation of the phosphoglucomutase Pgm, an enzyme that functions at the branch point between glycolysis and the CPS biosynthetic pathway. The findings provide a direct role for Mn/Zn homeostasis in the regulation of CPS expression levels and further support the ability of metal cations to act as important cellular signaling mediators in bacteria.


Asunto(s)
Cápsulas Bacterianas/metabolismo , Manganeso/metabolismo , Fosfoglucomutasa/metabolismo , Streptococcus pneumoniae/metabolismo , Zinc/metabolismo , Regulación Bacteriana de la Expresión Génica , Glucólisis , Homeostasis , Humanos , Iones/metabolismo , Mutación , Fosfoglucomutasa/genética , Fosforilación , Infecciones Neumocócicas/microbiología , Polisacáridos Bacterianos/metabolismo , Streptococcus pneumoniae/genética , Factores de Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...