Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
RSC Med Chem ; 15(4): 1381-1391, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38665829

RESUMEN

The emergence of antibiotic resistance to S. aureus and M. tuberculosis, particularly MRSA, VRSA, and drug-resistant tuberculosis, poses a serious threat to human health. Towards discovering new antibacterial agents, we designed and synthesized a series of new naphthalimide-thiourea derivatives and evaluated them against a panel of bacterial strains consisting of E. coli, S. aureus, K. pneumoniae, P. aeruginosa, A. baumannii and various mycobacterial pathogens. Compounds 4a, 4l, 4m, 4n, 4q, 9f, 9l, 13a, 13d, 13e, 17a, 17b, 17c, 17d, and 17e demonstrated potent antibacterial activity against S. aureus with MIC 0.03-8 µg mL-1. In addition, these compounds have also exhibited potent inhibition against MDR strains of S. aureus, including VRSA with MICs 0.06-4 µg mL-1. Compounds 4h, 4j, 4l, 4m, 4q, 4r, 9a, 9b, 9c, 9d, 9e, 9g, 9h, 9j, 13f and 17e also exhibited good antimycobacterial activity against M. tuberculosis with MIC 2-64 µg mL-1. The cytotoxicity assay using Vero cells revealed that all the compounds were non-toxic and exhibited a favorable selectivity index (SI >40). Time kill kinetics data indicated that compounds exhibited concentration-dependent killing. Furthermore, in silico studies were performed to decipher the possible mechanism of action. Comprehensively, these results highlight the potential of naphthalimide-thiourea derivatives as promising antibacterial agents.

2.
Eur J Med Chem ; 259: 115718, 2023 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-37573828

RESUMEN

Traumatic brain injury (TBI) is a debilitating mental condition which causes physical disability and morbidity worldwide. TBI may damage the brain by direct injury that subsequently triggers a series of neuroinflammatory events. The activation of NLRP3 inflammasome and dysregulated host immune system has been documented in various neurological disorders such as TBI, ischemic stroke and multiple sclerosis. The activation of NLRP3 post-TBI increases the production of pro-inflammatory cytokines and caspase-1, which are major drivers of neuroinflammation and apoptosis. Similarly, GSK-3ß regulates apoptosis through tyrosine kinase and canonical Wnt signalling pathways. Thus, therapeutic targeting of NLRP3 inflammasome and GSK-3ß has emerged as promising strategies for regulating the post-TBI neuroinflammation and neurobehavioral disturbances. In this review, we discuss the identification & development of several structurally diverse and pharmacologically interesting small molecule inhibitors for targeting the NLRP3 inflammasome and GSK-3ß in the management of TBI.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Inflamasomas , Humanos , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Enfermedades Neuroinflamatorias , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Lesiones Traumáticas del Encéfalo/metabolismo
3.
Bioorg Chem ; 135: 106478, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36958121

RESUMEN

Cancer is associated with uncontrolled cell proliferation invading adjoining tissues and organs. Despite the availability of several chemotherapeutic agents, the constant search for newer approaches and drugs is necessitated owing to the ever-growing challenge of resistance. Over the years, DNA has emerged as an important druggable therapeutic drug due to its role in critical cellular processes such as cell division and maintenance. Further, evading apoptosis stands out as a hallmark of cancer. Hence, designing new compounds that would target DNA and induce apoptosis plays an important role in cancer therapy. In the current work, we carried out the synthesis and anticancer evaluation of 1-aryl-4,6-dihydrobenzo[b]pyrazolo[3,4-d]azepin-5(1H)-ones/thiones (26 compounds) against selected human cancer cell lines. Among these, compounds 8ae, 8ad, 8cf, 10ad and Kenpaullone have shown good inhibitory properties against HeLa cells (IC50 < 2 µM) with good selectivity over the non-cancerous human embryonic kidney (Hek293T) cells. In cell cycle analysis, the compounds 8ad and 8cf have exhibited G2/M cell cycle arrest in HeLa cells. In addition, the compounds 8ad and 8cf induced apoptosis in a dose-dependent manner in the Annexin-V FITC staining assay. The DAPI staining clearly demonstrated the condensed and fragmented nuclei in 8ad, 8cf, 8ae and Kenpaullone-treated HeLa cells. In addition, these compounds strongly suppressed the healing after 48 h in in vitro cell migration assay. The DNA binding experiments indicated that compounds 8ae, 8cf, and 8ad as well as Kenpaullone interact with double-stranded DNA by binding in grooves which may interrupt the DNA replication and kill fast-growing cells. Molecular docking studies revealed the binding pose of 8ad and Kenpaullone at HT1 binding pocket of double-stranded DNA. Compounds 8ad and 8cf demonstrated moderate topo II inhibition which could be a possible reason for their anticancer properties. Compounds 8ad and 8cf may cause the topo II and DNA covalent complex, which leads to the inhibition of DNA replication and transcription. This eventually increases the DNA damage in cells and promotes cell apoptosis. With the above interesting biological profile, the new 1-aryl-2,6-dihydrobenzo[b]pyrazolo[3,4-d]azepin-5(4H)-one/thione derivatives have emerged as promising leads for the discovery of new anticancer agents.


Asunto(s)
Antineoplásicos , Tionas , Humanos , Antineoplásicos/química , Apoptosis , Línea Celular Tumoral , Proliferación Celular , Ensayos de Selección de Medicamentos Antitumorales , Células HEK293 , Células HeLa , Simulación del Acoplamiento Molecular , Estructura Molecular , Relación Estructura-Actividad , Tionas/farmacología , Azepinas/química , Azepinas/farmacología
4.
Bioorg Chem ; 124: 105849, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35594766

RESUMEN

Acinetobacter baumannii, a Gram-negative, glucose non-fermentative coccobacilli are responsible for causing a wide range of opportunistic nosocomial infections, thus listed as a WHO "critical priority pathogen", for which identification and development of new antibacterial agents are an urgent unmet medical need. The current review attempts to present an overview of various mechanisms (enzymatic and non-enzymatic), virulence factors responsible for A. baumannii resistance. Furthermore, inhibitors of A. baumannii are categorized into different classes highlighting their MDR inhibition properties. In addition, novel adjuvants that potentiate existing antibiotics, as well as natural and synthetic compounds that limit biofilm formation in A. baumannii infections are discussed.


Asunto(s)
Infecciones por Acinetobacter , Acinetobacter baumannii , Infección Hospitalaria , Infecciones por Acinetobacter/tratamiento farmacológico , Infecciones por Acinetobacter/microbiología , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Infección Hospitalaria/tratamiento farmacológico , Farmacorresistencia Bacteriana Múltiple , Humanos
5.
Org Biomol Chem ; 18(48): 9737-9761, 2020 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-33211792

RESUMEN

Microwave technology has emerged as a great tool for the efficient synthesis of organic compounds and it provides opportunities for chemists to achieve chemical transformations that tend to be challenging using classical approaches. Additionally, N-heterocycles are well-known for their medicinal/biological significance, along with their applications as excellent building blocks in chemical synthesis. The dominance of N-heterocycles in drug molecules and other pharmacological agents makes them attractive scaffolds, which encourages chemists to develop a wide range of strategies towards the greener synthesis and functionalization of these heterocycles. In this regard, we have collated and discussed literature relating to the microwave-assisted synthesis and the modification of non-(benzo)fused single-nitrogen-containing N-heterocycles from the past decade. The role of the microwave technique and its benefits over the conventional approach have also been emphasized in terms of overall reaction efficiency, reaction time, yield, reduced side-product generation, neat and clean reactions, chemo-/regio-/enantio-selectivity, and the use of mild reagents/reaction conditions to achieve the objectives of green and sustainable chemistry.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...