Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Cardiovasc Transl Res ; 12(5): 478-487, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-30963423

RESUMEN

We have shown previously that during myocardial ischemia/reperfusion (MI/R), toll-like receptor 2 (TLR2) signaling regulates connexin 43 (Cx43) subcellular localization and function and dampens arrhythmia formation. We aimed to identify sites capable of TLR2-dependent redox modification within Cx43. Post-ischemic TLR2-/- or wild-type (WT) mouse hearts were analyzed by OxICAT. Cx43 was mutated to exclude redox modification and transfected into HL-1 cardiomyocytes (CM) that were challenged with a TLR2 agonist. We identified Cys260 of Cx43 to be susceptible to reversible oxidation MI/R; TLR2-/- leads to reduced H2O2 production in post-ischemic isolated mitochondria and subsequently reduced oxidation of Cx43 at Cys260. Cx43 was dephosphorylated in WT, while phosphorylation was preserved in TLR2-/-. Mutation of Cx43 (C260A) and lentiviral transfection in HL-1 CM accelerated pacemaker activity and reduced activity after TLR2 ligand stimulation. We here provide evidence for TLR2-dependent reversible oxidation of Cx43 at Cys260, which led to decreased Cx43 phosphorylation and affected CM pacemaker frequency and intercellular communication.


Asunto(s)
Arritmias Cardíacas/metabolismo , Conexina 43/metabolismo , Frecuencia Cardíaca , Mitocondrias Cardíacas/metabolismo , Daño por Reperfusión Miocárdica/metabolismo , Miocitos Cardíacos/metabolismo , Receptor Toll-Like 2/metabolismo , Potenciales de Acción , Animales , Arritmias Cardíacas/genética , Arritmias Cardíacas/patología , Arritmias Cardíacas/fisiopatología , Comunicación Celular , Línea Celular , Conexina 43/deficiencia , Conexina 43/genética , Cisteína , Modelos Animales de Enfermedad , Peróxido de Hidrógeno/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias Cardíacas/patología , Daño por Reperfusión Miocárdica/genética , Daño por Reperfusión Miocárdica/patología , Daño por Reperfusión Miocárdica/fisiopatología , Miocitos Cardíacos/patología , Oxidación-Reducción , Fosforilación , Transducción de Señal , Receptor Toll-Like 2/deficiencia , Receptor Toll-Like 2/genética
2.
Nat Commun ; 9(1): 2292, 2018 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-29895827

RESUMEN

Oxidized phospholipids (oxPAPC) induce endothelial dysfunction and atherosclerosis. Here we show that oxPAPC induce a gene network regulating serine-glycine metabolism with the mitochondrial methylenetetrahydrofolate dehydrogenase/cyclohydrolase (MTHFD2) as a causal regulator using integrative network modeling and Bayesian network analysis in human aortic endothelial cells. The cluster is activated in human plaque material and by atherogenic lipoproteins isolated from plasma of patients with coronary artery disease (CAD). Single nucleotide polymorphisms (SNPs) within the MTHFD2-controlled cluster associate with CAD. The MTHFD2-controlled cluster redirects metabolism to glycine synthesis to replenish purine nucleotides. Since endothelial cells secrete purines in response to oxPAPC, the MTHFD2-controlled response maintains endothelial ATP. Accordingly, MTHFD2-dependent glycine synthesis is a prerequisite for angiogenesis. Thus, we propose that endothelial cells undergo MTHFD2-mediated reprogramming toward serine-glycine and mitochondrial one-carbon metabolism to compensate for the loss of ATP in response to oxPAPC during atherosclerosis.


Asunto(s)
Aminoácidos/metabolismo , Aminohidrolasas/metabolismo , Aterosclerosis/metabolismo , Células Endoteliales/metabolismo , Metilenotetrahidrofolato Deshidrogenasa (NADP)/metabolismo , Enzimas Multifuncionales/metabolismo , Fosfolípidos/química , Animales , Aorta/citología , Teorema de Bayes , Enfermedades Cardiovasculares/metabolismo , Regulación de la Expresión Génica , Técnicas Genéticas , Glicina/química , Células Endoteliales de la Vena Umbilical Humana , Humanos , Familia de Multigenes , Neovascularización Patológica , Nucleótidos/química , Oxígeno/química , Probabilidad , Purinas/química , ARN Interferente Pequeño/metabolismo , Pez Cebra
3.
J Mol Cell Cardiol ; 116: 57-68, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29408197

RESUMEN

Sphingosine-1-Phosphate (S1P) is a potent signaling lipid. The effects of S1P are mediated by the five S1P receptors (S1PR). In the endothelium S1PR1 is the predominant receptor and thus S1PR1 abundance limits S1P signaling. Recently, lncRNAs were identified as a novel class of molecules regulating gene expression. Interestingly, the lncRNA NONHSAT004848 (LISPR1, Long intergenic noncoding RNA antisense to S1PR1), is closely positioned to the S1P1 receptors gene and in part shares its promoter region. We hypothesize that LISPR1 controls endothelial S1PR1 expression and thus S1P-induced signaling in endothelial cells. In vitro transcription and translation as well as coding potential assessment showed that LISPR1 is indeed noncoding. LISPR1 was localized in both cytoplasm and nucleus and harbored a PolyA tail at the 3'end. In human umbilical vein endothelial cells, as well as human lung tissue, qRT-PCR and RNA-Seq revealed high expression of LISPR1. S1PR1 and LISPR1 were downregulated in human pulmonary diseases such as COPD. LISPR1 but also S1PR1 were induced by inflammation, shear stress and statins. Knockdown of LISPR1 attenuated endothelial S1P-induced migration and spheroid outgrowth of endothelial cells. LISPR1 knockdown decreased S1PR1 expression, which was paralleled by an increase of the binding of the transcriptional repressor ZNF354C to the S1PR1 promoter and a reduction of the recruitment of RNA Polymerase II to the S1PR1 5'end. This resulted in attenuated S1PR1 expression and attenuated S1P downstream signaling. Collectively, the disease relevant lncRNA LISPR1 acts as a novel regulatory unit important for S1PR1 expression and endothelial cell function.


Asunto(s)
Células Endoteliales de la Vena Umbilical Humana/metabolismo , Lisofosfolípidos/metabolismo , ARN Largo no Codificante/metabolismo , Transducción de Señal , Esfingosina/análogos & derivados , ADN/metabolismo , Regulación hacia Abajo/genética , Regulación de la Expresión Génica , Humanos , Pulmón/metabolismo , Neovascularización Fisiológica , ARN Largo no Codificante/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores de Lisoesfingolípidos/metabolismo , Proteínas Represoras/metabolismo , Esfingosina/metabolismo , Transcripción Genética
4.
Circulation ; 136(1): 65-79, 2017 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-28351900

RESUMEN

BACKGROUND: The angiogenic function of endothelial cells is regulated by numerous mechanisms, but the impact of long noncoding RNAs (lncRNAs) has hardly been studied. We set out to identify novel and functionally important endothelial lncRNAs. METHODS: Epigenetically controlled lncRNAs in human umbilical vein endothelial cells were searched by exon-array analysis after knockdown of the histone demethylase JARID1B. Molecular mechanisms were investigated by RNA pulldown and immunoprecipitation, mass spectrometry, microarray, several knockdown approaches, CRISPR-Cas9, assay for transposase-accessible chromatin sequencing, and chromatin immunoprecipitation in human umbilical vein endothelial cells. Patient samples from lung and tumors were studied for MANTIS expression. RESULTS: A search for epigenetically controlled endothelial lncRNAs yielded lncRNA n342419, here termed MANTIS, as the most strongly regulated lncRNA. Controlled by the histone demethylase JARID1B, MANTIS was downregulated in patients with idiopathic pulmonary arterial hypertension and in rats treated with monocrotaline, whereas it was upregulated in carotid arteries of Macaca fascicularis subjected to atherosclerosis regression diet, and in endothelial cells isolated from human glioblastoma patients. CRISPR/Cas9-mediated deletion or silencing of MANTIS with small interfering RNAs or GapmeRs inhibited angiogenic sprouting and alignment of endothelial cells in response to shear stress. Mechanistically, the nuclear-localized MANTIS lncRNA interacted with BRG1, the catalytic subunit of the switch/sucrose nonfermentable chromatin-remodeling complex. This interaction was required for nucleosome remodeling by keeping the ATPase function of BRG1 active. Thereby, the transcription of key endothelial genes such as SOX18, SMAD6, and COUP-TFII was regulated by ensuring efficient RNA polymerase II machinery binding. CONCLUSION: MANTIS is a differentially regulated novel lncRNA facilitating endothelial angiogenic function.


Asunto(s)
Sistemas CRISPR-Cas/fisiología , Epigénesis Genética/fisiología , Células Endoteliales de la Vena Umbilical Humana/fisiología , Microvasos/fisiología , Neovascularización Fisiológica/fisiología , ARN Largo no Codificante/biosíntesis , Animales , Línea Celular , Humanos , Hipertensión Pulmonar/genética , Hipertensión Pulmonar/metabolismo , Histona Demetilasas con Dominio de Jumonji/biosíntesis , Histona Demetilasas con Dominio de Jumonji/genética , Macaca fascicularis , Masculino , Ratones , Ratones SCID , Proteínas Nucleares/biosíntesis , Proteínas Nucleares/genética , ARN Largo no Codificante/genética , Ratas , Ratas Sprague-Dawley , Proteínas Represoras/biosíntesis , Proteínas Represoras/genética
5.
Redox Biol ; 9: 287-295, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27614387

RESUMEN

The NADPH oxidases are important transmembrane proteins producing reactive oxygen species (ROS). Within the Nox family, different modes of activation can be discriminated. Nox1-3 are dependent on different cytosolic subunits, Nox4 seems to be constitutively active and Nox5 is directly activated by calcium. With the exception of Nox5, all Nox family members are thought to depend on the small transmembrane protein p22phox. With the discovery of the CRISPR/Cas9-system, a tool to alter genomic DNA sequences has become available. So far, this method has not been widely used in the redox community. On such basis, we decided to study the requirement of p22phox in the Nox complex using CRISPR/Cas9-mediated knockout. Knockout of the gene of p22phox, CYBA, led to an ablation of activity of Nox4 and Nox1 but not of Nox5. Production of hydrogen peroxide or superoxide after knockout could be rescued with either human or rat p22phox, but not with the DUOX-maturation factors DUOXA1/A2. Furthermore, different mutations of p22phox were studied regarding the influence on Nox4-dependent H2O2 production. P22phox Q130* and Y121H affected maturation and activity of Nox4. Hence, Nox5-dependent O2•- production is independent of p22phox, but native p22phox is needed for maturation of Nox4 and production of H2O2.


Asunto(s)
Sistemas CRISPR-Cas , Técnicas de Inactivación de Genes , NADPH Oxidasa 1/metabolismo , NADPH Oxidasa 4/metabolismo , NADPH Oxidasa 5/metabolismo , NADPH Oxidasas/genética , Línea Celular Tumoral , Humanos , Peróxido de Hidrógeno/metabolismo , Proteínas de la Membrana/genética , Especies Reactivas de Oxígeno/metabolismo
6.
Arterioscler Thromb Vasc Biol ; 36(8): 1558-65, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27283741

RESUMEN

OBJECTIVE: Reactive oxygen species generated by nicotinamide adenine dinucleotide phosphate (NADPH) oxidases contribute to angiogenesis and vascular repair. NADPH oxidase organizer 1 (NoxO1) is a cytosolic protein facilitating assembly of constitutively active NADPH oxidases. We speculate that NoxO1 also contributes to basal reactive oxygen species formation in the vascular system and thus modulates angiogenesis. APPROACH AND RESULTS: A NoxO1 knockout mouse was generated, and angiogenesis was studied in cultured cells and in vivo. Angiogenesis of the developing retina and after femoral artery ligation was increased in NoxO1(-/-) when compared with wild-type animals. Spheroid outgrowth assays revealed greater angiogenic capacity of NoxO1(-/-) lung endothelial cells (LECs) and a more tip-cell-like phenotype than wild-type LECs. Usually signaling by the Notch pathway switches endothelial cells from a tip into a stalk cell phenotype. NoxO1(-/-) LECs exhibited attenuated Notch signaling as a consequence of an attenuated release of the Notch intracellular domain on ligand stimulation. This release is mediated by proteolytic cleavage involving the α-secretase ADAM17. For maximal activity, ADAM17 has to be oxidized, and overexpression of NoxO1 promoted this mode of activation. Moreover, the activity of ADAM17 was reduced in NoxO1(-/-) LECs when compared with wild-type LECs. CONCLUSIONS: NoxO1 stimulates α-secretase activity probably through reactive oxygen species-mediated oxidation. Deletion of NoxO1 attenuates Notch signaling and thereby promotes a tip-cell phenotype that results in increased angiogenesis.


Asunto(s)
Células Endoteliales/enzimología , Isquemia/enzimología , Músculo Esquelético/irrigación sanguínea , NADH NADPH Oxidorreductasas/metabolismo , Neovascularización Fisiológica , Especies Reactivas de Oxígeno/metabolismo , Neovascularización Retiniana/enzimología , Proteína ADAM10/metabolismo , Proteína ADAM17/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Genotipo , Miembro Posterior , Isquemia/genética , Isquemia/fisiopatología , Proteínas de la Membrana/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , NADH NADPH Oxidorreductasas/deficiencia , NADH NADPH Oxidorreductasas/genética , NADPH Oxidasa 1 , NADPH Oxidasas/deficiencia , NADPH Oxidasas/genética , Estrés Oxidativo , Fenotipo , Receptores Notch/metabolismo , Flujo Sanguíneo Regional , Neovascularización Retiniana/genética , Neovascularización Retiniana/fisiopatología , Transducción de Señal , Factores de Tiempo
7.
Arterioscler Thromb Vasc Biol ; 35(7): 1645-52, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26023081

RESUMEN

OBJECTIVE: Altering endothelial biology through epigenetic modifiers is an attractive novel concept, which is, however, just in its beginnings. We therefore set out to identify chromatin modifiers important for endothelial gene expression and contributing to angiogenesis. APPROACH AND RESULTS: To identify chromatin modifying enzymes in endothelial cells, histone demethylases were screened by microarray and polymerase chain reaction. The histone 3 lysine 4 demethylase JARID1B was identified as a highly expressed enzyme at the mRNA and protein levels. Knockdown of JARID1B by shRNA in human umbilical vein endothelial cells attenuated cell migration, angiogenic sprouting, and tube formation. Similarly, pharmacological inhibition and overexpression of a catalytic inactive JARID1B mutant reduced the angiogenic capacity of human umbilical vein endothelial cells. To identify the in vivo relevance of JARID1B in the vascular system, Jarid1b knockout mice were studied. As global knockout results in increased mortality and developmental defects, tamoxifen-inducible and endothelial-specific knockout mice were generated. Acute knockout of Jarid1b attenuated retinal angiogenesis and endothelial sprout outgrowth from aortic segments. To identify the underlying mechanism, a microarray experiment was performed, which led to the identification of the antiangiogenic transcription factor HOXA5 to be suppressed by JARID1B. Importantly, downregulation or inhibition of JARID1B, but not of JARID1A and JARID1C, induced HOXA5 expression in human umbilical vein endothelial cells. Consistently, chromatin immunoprecipitation revealed that JARID1B occupies and reduces the histone 3 lysine 4 methylation levels at the HOXA5 promoter, demonstrating a direct function of JARID1B in endothelial HOXA5 gene regulation. CONCLUSIONS: JARID1B, by suppressing HOXA5, maintains the endothelial angiogenic capacity in a demethylase-dependent manner.


Asunto(s)
Proteínas de Unión al ADN/fisiología , Epigénesis Genética , Proteínas de Homeodominio/genética , Histona Demetilasas con Dominio de Jumonji/fisiología , Neovascularización Fisiológica/genética , Proteínas Nucleares/fisiología , Fosfoproteínas/genética , Animales , Células Cultivadas , Células Endoteliales/fisiología , Proteínas de Homeodominio/fisiología , Humanos , Ratones Noqueados , Fosfoproteínas/fisiología , Factores de Transcripción , Transcripción Genética , Venas Umbilicales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...