Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nature ; 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38987601

RESUMEN

Coherent optical driving in quantum solids is emerging as a research frontier, with many reports of interesting non-equilibrium quantum phases1-4 and transient photo-induced functional phenomena such as ferroelectricity5,6, magnetism7-10 and superconductivity11-14. In high-temperature cuprate superconductors, coherent driving of certain phonon modes has resulted in a transient state with superconducting-like optical properties, observed far above their transition temperature Tc and throughout the pseudogap phase15-18. However, questions remain on the microscopic nature of this transient state and how to distinguish it from a non-superconducting state with enhanced carrier mobility. For example, it is not known whether cuprates driven in this fashion exhibit Meissner diamagnetism. Here we examine the time-dependent magnetic field surrounding an optically driven YBa2Cu3O6.48 crystal by measuring Faraday rotation in a magneto-optic material placed in the vicinity of the sample. For a constant applied magnetic field and under the same driving conditions that result in superconducting-like optical properties15-18, a transient diamagnetic response was observed. This response is comparable in size with that expected in an equilibrium type II superconductor of similar shape and size with a volume susceptibility χv of order -0.3. This value is incompatible with a photo-induced increase in mobility without superconductivity. Rather, it underscores the notion of a pseudogap phase in which incipient superconducting correlations are enhanced or synchronized by the drive.

2.
Phys Rev Lett ; 127(19): 197002, 2021 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-34797153

RESUMEN

Resonant optical excitation of certain molecular vibrations in κ-(BEDT-TTF)_{2}Cu[N(CN)_{2}]Br has been shown to induce transient superconductinglike optical properties at temperatures far above equilibrium T_{c}. Here, we report experiments across the bandwidth-tuned phase diagram of this class of materials, and study the Mott insulator κ-(BEDT-TTF)_{2}Cu[N(CN)_{2}]Cl and the metallic compound κ-(BEDT-TTF)_{2}Cu(NCS)_{2}. We find nonequilibrium photoinduced superconductivity only in κ-(BEDT-TTF)_{2}Cu[N(CN)_{2}]Br, indicating that the proximity to the Mott insulating phase and possibly the presence of preexisting superconducting fluctuations are prerequisites for this effect.

3.
Nat Phys ; 16(1): 38-41, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31915458

RESUMEN

Many non-equilibrium phenomena have been discovered or predicted in optically-driven quantum solids1. Examples include light-induced superconductivity2,3 and Floquet-engineered topological phases4-8. These are short lived effects that should lead to measurable changes in electrical transport, which can be characterized using an ultrafast device architecture based on photoconductive switches9. Here, we report the observation of a light-induced anomalous Hall effect in monolayer graphene driven by a femtosecond pulse of circularly polarized light. The dependence of the effect on a gate potential used to tune the Fermi level reveals multiple features that reflect a Floquet-engineered topological band structure4,5, similar to the band structure originally proposed by Haldane10. This includes an approximately 60 meV wide conductance plateau centered at the Dirac point, where a gap of equal magnitude is predicted to open. We find that when the Fermi level lies within this plateau, the estimated anomalous Hall conductance saturates around 1.8±0.4 e2/h.

4.
Nat Phys ; 14(8): 837-841, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30079096

RESUMEN

Optical excitation at terahertz frequencies has emerged as an effective means to dynamically manipulate complex materials. In the molecular solid K3C60, short mid-infrared pulses transform the high-temperature metal into a non-equilibrium state with the optical properties of a superconductor. Here we tune this effect with hydrostatic pressure and find that the superconducting-like features gradually disappear at around 0.3 GPa. Reduction with pressure underscores the similarity with the equilibrium superconducting phase of K3C60, in which a larger electronic bandwidth induced by pressure is also detrimental for pairing. Crucially, our observation excludes alternative interpretations based on a high-mobility metallic phase. The pressure dependence also suggests that transient, incipient superconductivity occurs far above the 150 K hypothesised previously, and rather extends all the way to room temperature.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...