Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mol Metab ; 76: 101772, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37442376

RESUMEN

OBJECTIVES: Readily accessible human pancreatic beta cells that are functionally close to primary adult beta cells are a crucial model to better understand human beta cell physiology and develop new treatments for diabetes. We here report the characterization of EndoC-ßH5 cells, the latest in the EndoC-ßH cell family. METHODS: EndoC-ßH5 cells were generated by integrative gene transfer of immortalizing transgenes hTERT and SV40 large T along with Herpes Simplex Virus-1 thymidine kinase into human fetal pancreas. Immortalizing transgenes were removed after amplification using CRE activation and remaining non-excized cells eliminated using ganciclovir. Resulting cells were distributed as ready to use EndoC-ßH5 cells. We performed transcriptome, immunological and extensive functional assays. RESULTS: Ready to use EndoC-ßH5 cells display highly efficient glucose dependent insulin secretion. A robust 10-fold insulin secretion index was observed and reproduced in four independent laboratories across Europe. EndoC-ßH5 cells secrete insulin in a dynamic manner in response to glucose and secretion is further potentiated by GIP and GLP-1 analogs. RNA-seq confirmed abundant expression of beta cell transcription factors and functional markers, including incretin receptors. Cytokines induce a gene expression signature of inflammatory pathways and antigen processing and presentation. Finally, modified HLA-A2 expressing EndoC-ßH5 cells elicit specific A2-alloreactive CD8 T cell activation. CONCLUSIONS: EndoC-ßH5 cells represent a unique storable and ready to use human pancreatic beta cell model with highly robust and reproducible features. Such cells are thus relevant for the study of beta cell function, screening and validation of new drugs, and development of disease models.


Asunto(s)
Células Secretoras de Insulina , Humanos , Células Secretoras de Insulina/metabolismo , Secreción de Insulina , Línea Celular , Insulina/metabolismo , Factores de Transcripción/metabolismo , Glucosa/metabolismo
2.
Proc Natl Acad Sci U S A ; 115(32): E7624-E7631, 2018 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-30038018

RESUMEN

Regulated exocytosis, which underlies many intercellular signaling events, is a tightly controlled process often triggered by calcium ion(s) (Ca2+). Despite considerable insight into the central components involved, namely, the core fusion machinery [soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE)] and the principal Ca2+ sensor [C2-domain proteins like synaptotagmin (Syt)], the molecular mechanism of Ca2+-dependent release has been unclear. Here, we report that the Ca2+-sensitive oligomers of Syt1, a conserved structural feature among several C2-domain proteins, play a critical role in orchestrating Ca2+-coupled vesicular release. This follows from pHluorin-based imaging of single-vesicle exocytosis in pheochromocytoma (PC12) cells showing that selective disruption of Syt1 oligomerization using a structure-directed mutation (F349A) dramatically increases the normally low levels of constitutive exocytosis to effectively occlude Ca2+-stimulated release. We propose a parsimonious model whereby Ca2+-sensitive oligomers of Syt (or a similar C2-domain protein) assembled at the site of docking physically block spontaneous fusion until disrupted by Ca2+ Our data further suggest Ca2+-coupled vesicular release is triggered by removal of the inhibition, rather than by direct activation of the fusion machinery.


Asunto(s)
Calcio/metabolismo , Exocitosis , Fusión de Membrana/fisiología , Multimerización de Proteína/fisiología , Sinaptotagmina I/metabolismo , Animales , Cationes Bivalentes/metabolismo , Vesículas Citoplasmáticas/metabolismo , Vesículas Citoplasmáticas/ultraestructura , Técnica del Anticuerpo Fluorescente , Proteínas Fluorescentes Verdes/química , Microscopía Electrónica , Mutación , Células PC12 , Unión Proteica/fisiología , Ratas , Proteínas Recombinantes/metabolismo , Sinaptotagmina I/genética , Proteína 2 de Membrana Asociada a Vesículas/metabolismo
3.
Cell Rep ; 22(3): 820-831, 2018 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-29346777

RESUMEN

Mutations in proline-rich transmembrane protein 2 (PRRT2) are associated with a range of paroxysmal neurological disorders. PRRT2 predominantly localizes to the pre-synaptic terminals and is believed to regulate neurotransmitter release. However, the mechanism of action is unclear. Here, we use reconstituted single vesicle and bulk fusion assays, combined with live cell imaging of single exocytotic events in PC12 cells and biophysical analysis, to delineate the physiological role of PRRT2. We report that PRRT2 selectively blocks the trans SNARE complex assembly and thus negatively regulates synaptic vesicle priming. This inhibition is actualized via weak interactions of the N-terminal proline-rich domain with the synaptic SNARE proteins. Furthermore, we demonstrate that paroxysmal dyskinesia-associated mutations in PRRT2 disrupt this SNARE-modulatory function and with efficiencies corresponding to the severity of the disease phenotype. Our findings provide insights into the molecular mechanisms through which loss-of-function mutations in PRRT2 result in paroxysmal neurological disorders.


Asunto(s)
Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Terminales Presinápticos/metabolismo , Proteínas SNARE/metabolismo , Animales , Humanos , Fusión de Membrana , Proteínas de la Membrana/genética , Mutación , Proteínas del Tejido Nervioso/genética , Células PC12 , Ratas , Proteínas SNARE/genética , Transmisión Sináptica
4.
Mol Biol Cell ; 25(20): 3195-209, 2014 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-25143404

RESUMEN

Membrane fusion underlies multiple processes, including exocytosis of hormones and neurotransmitters. Membrane fusion starts with the formation of a narrow fusion pore. Radial expansion of this pore completes the process and allows fast release of secretory compounds, but this step remains poorly understood. Here we show that inhibiting the expression of the small GTPase Cdc42 or preventing its activation with a dominant negative Cdc42 construct in human neuroendocrine cells impaired the release process by compromising fusion pore enlargement. Consequently the mode of vesicle exocytosis was shifted from full-collapse fusion to kiss-and-run. Remarkably, Cdc42-knockdown cells showed reduced membrane tension, and the artificial increase of membrane tension restored fusion pore enlargement. Moreover, inhibiting the motor protein myosin II by blebbistatin decreased membrane tension, as well as fusion pore dilation. We conclude that membrane tension is the driving force for fusion pore dilation and that Cdc42 is a key regulator of this force.


Asunto(s)
Membrana Celular/metabolismo , Exocitosis/fisiología , Fusión de Membrana/fisiología , Vesículas Secretoras/metabolismo , Proteína de Unión al GTP cdc42/metabolismo , Transporte Biológico , Humanos , Miosina Tipo II/metabolismo
5.
J Neurosci ; 32(7): 2564-77, 2012 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-22396429

RESUMEN

Exocytosis of secretory granules (SGs) requires their delivery to the actin-rich cell cortex followed by their attachment to the plasma membrane (PM). How these reactions are executed and coordinated is still unclear. Myrip, which is also known as Slac-2c, binds to the SG-associated GTPase Rab27 and is thought to promote the delivery of SGs to the PM by recruiting the molecular motor myosin Va. Myrip also interacts with actin and the exocyst complex, suggesting that it may exert multiple roles in the secretory process. By combining total internal reflection fluorescence microscopy, single-particle tracking, a photoconversion-based assay, and mathematical modeling, we show that, in human enterochromaffin cells, Myrip (1) inhibits a class of SG motion characterized by fast and directed movement, suggesting that it facilitates the dissociation of SGs from microtubules; (2) enhances their motion toward the PM and the probability of SG attachment to the PM; and (3) increases the characteristic time of immobilization at the PM, indicating that it is a component of the molecular machinery that tether SGs to the PM. Remarkably, while the first two effects of Myrip depend on its ability to recruit myosin Va on SGs, the third is myosin Va independent but relies on the C-terminal domain of Myrip. We conclude that Myrip couples the retention of SGs in the cell cortex, their transport to the PM, and their attachment to the PM, and thus promotes secretion. These three steps of the secretory process are thus intimately coordinated.


Asunto(s)
Actinas/metabolismo , Membrana Celular/metabolismo , Exocitosis/fisiología , Vesículas Secretoras/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Adhesión Celular/fisiología , Línea Celular Tumoral , Membrana Celular/ultraestructura , Células Enterocromafines/metabolismo , Células Enterocromafines/ultraestructura , Humanos , Unión Proteica/fisiología , Vesículas Secretoras/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...