RESUMEN
Background: The Glu-Urea-Lys (EUK) pharmacophore as prostate-specific membrane antigen (PSMA)-targeted ligand was synthesized, radiolabeled with 99mTc-tricarbonyl-imidazole-BPS chelation system, and biological activities were evaluated. The strategy [2 + 1] ligand is applied for tricarbonyl labeling. (5-imidazole-1-yl)pentanoic acid as a monodentate ligand and bathophenanthroline disulfonate (BPS) as a bidentate ligand formed a chelate system with 99mTc-tricarbonyl. EUK-pentanoic acid-imidazole and EUK were evaluated for PSMA active site using AutoDock 4 software. Materials and Methods: EUK-pentanoic acid-imidazole was synthesized in two steps. BPS was radiolabeled with 99mTc-tricarbonyl at 100°C for 30 min. The purified 99mTc(CO)3(H2O)BPS was used to radiolabel EUK-pentanoic acid-imidazole at 100°C, 30 min. Radiochemical purity, Log P, and stability studies were carried out within 24 h. Affinity of 99mTc(CO)3BPS-imidazole-EUK was performed in the saturation binding studies using LNCaP cells at 37°C for 1 h with a range of 0.001-1000 nM radiolabeled compound range. Internalization studies were performed in LNCaP cells with 1000 nM radiolabeled compound incubated for (0-2) h at 37°C. Biodistribution was studied in normal male Balb/c mice. The artificial intelligence predicts the uptake of radiolabeled compound in tumor. Results: The structures of synthesized compounds were confirmed by mass spectroscopy. Radiochemical purity, Log P, and protein binding were ≥95%, -0.2%, and 23%, respectively. The radiolabeled compound was stable in saline and human plasma within 24 h with radiochemical purity ≥90%. There was no release of 99mTc within 4 h in competition with histidine. The affinity was 82 ± 26.38 nM, and the activity increased inside the cells over time. Biodistribution studies showed radioactivity accumulation in kidneys less than 99mTc-HYNIC-PSMA. There was a moderate accumulation of radioactivity in the liver and intestine. Conclusion: Based on the results, 99mTc(CO)3BPS-imidazole-EUK can potentially be used as an imaging agent for studies at prostate bed and distal areas. The chelate system can be potentially labeled with rhenium for imaging studies (fluorescent or scintigraphy) and therapy.