Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Environ Manage ; 357: 120814, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38581896

RESUMEN

Investigating the possible direction of a CO2-dissolved water plume migration near the potential CO2 leakage area is a significant task because it helps estimate the spatial and temporal monitoring scale to detect the signal of released CO2 from the storage. Accordingly, the Korea CO2 Storage Environmental Management (K-COSEM) research center tried to develop an intensive monitoring system and applied it to the artificial CO2 release test in the actual field. Monitoring data from the field tests depicted the horizontal movement of the CO2-dissolved water plume along the direction of the groundwater flow. However, it remains unclear how the CO2-dissolved water plume migrates vertically and how gas accumulation occurs near the capillary zone. The present study simulated the CO2 release test with a visual expression method utilizing a Hele-Shaw cell with hydraulic gradient conditions (i = 0, 0.1, and 0.01) and tried to estimate the significant influences on a diffusive-advective transport of the dissolved gas plume with the shallow aquifer condition. The visualization experiment results were intuitively verified to determine whether the theoretical principles of action related to plume flow applied in this context. The results suggest that a CO2-dissolved water plume is distributed by hydraulic gradients and density-driven CO2 convective flow. The plume shape, center, and area were analyzed using an image analyzer program; the results demonstrated that the plume characteristic evolved depending on the significant effects on the plume. When the plume was mainly affected by the hydraulic gradient, it rapidly moved from the injection point to the last boundary; in contrast, when it was influenced primarily by density-driven CO2 convective flow, it flowed diagonally downward in the shape of varied branches. The numerical model calculated the migration of the CO2-dissolved water plume affected by both factors. The laboratory experiment and numerical simulation results suggest that the migration of a CO2-dissolved water plume may be affected by the hydraulic gradient and density-driven CO2 convective transport. As such, these factors should be considered when designing and analyzing CO2 monitoring signals to detect CO2 leaks from shallow aquifer systems.


Asunto(s)
Agua Subterránea , Contaminantes Químicos del Agua , Dióxido de Carbono , Agua , Simulación por Computador , Contaminantes Químicos del Agua/análisis
2.
Water Res ; 236: 119955, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37087918

RESUMEN

In the present study, a single-well push-pull (SWPP) test was conducted with multi-component tracers, including inert gas (SF6 and Kr) and uranine (conservative), to understand the volatile/semi-volatile component transport characteristics in the groundwater system. In an SWPP test, it is essential to obtain an initial breakthrough curve (BTC) of the inert gas concentration at the beginning of the pulling stage to analyze the hydraulic properties of the groundwater system. As a result of the SWPP test using a proposed method in this study, physicochemical parameters of the groundwater and BTC of gas tracers and uranine were acquired simultaneously and successfully. In addition, on-site measurements of uranine, pCO2, and water quality data, such as electrical conductivity (EC), temperature, pH, and dissolved oxygen, were undertaken. Modification of an existing pCO2 measuring system allowed the gas samples to be collected, transported, and analyzed for inert gas components within a few hours. As a result, reliable and interpretable data with a recovery ratio of 26%, 85%, and 95% for SF6, Kr, and uranine, respectively, were obtained. The differences in the recovery ratio were utilized to identify the environmental system, whether it contains gas inside the isolated system (closed) or not (open), and to understand plume behavior characteristics in the experimental zone. By applying a two-dimensional advection-dispersion model to the acquired tracer test data and comparing the observed and computed tracer concentrations, helpful information was obtained on the hydraulic and transport characteristics of the targeted zone. This method can be extended to the design of dissolved CO2 transport monitoring of an aquifer above a CCS site.


Asunto(s)
Agua Subterránea , Fluoresceína
3.
Sci Total Environ ; 824: 153835, 2022 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-35176379

RESUMEN

Geological storage of carbon dioxide (CO2) is an integral component of cost-effective greenhouse gas emissions reduction scenarios. However, a robust monitoring regime is necessary for public and regulatory assurance that any leakage from a storage site can be detected. Here, we present the results from a controlled CO2 release experiment undertaken at the K-COSEM test site (South Korea) with the aim of demonstrating the effectiveness of the inherent tracer fingerprints (noble gases, δ13C) in monitoring CO2 leakage. Following injection of 396 kg CO2(g) into a shallow aquifer, gas release was monitored for 2 months in gas/water phases in and above the injection zone. The injection event resulted in negative concentration changes of the dissolved gases, attributed to the stripping action of the depleted CO2. Measured fingerprints from inherent noble gases successfully identified solubility-trapping of the injected CO2 within the shallow aquifer. The δ13C within the shallow aquifer could not resolve the level of gas trapping, due to the interaction with heterogeneous carbonate sources in the shallow aquifer. The time-series monitoring of δ13CDIC and dissolved gases detected the stripping action of injected CO2(g), which can provide an early warning of CO2 arrival. This study highlights that inherent noble gases can effectively trace the upwardly migrating and fate of CO2 within a shallow aquifer.


Asunto(s)
Dióxido de Carbono , Agua Subterránea , Preparaciones de Acción Retardada , Gases , Gases Nobles
4.
J Environ Manage ; 266: 110568, 2020 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-32310117

RESUMEN

Continuous CO2 gas monitoring was performed to understand the natural variations of the gas concentration in the vadose zone wells. The monitoring results demonstrated sudden rise and fall signals, which posed a possibility of error in interpreting the CO2 leaking signal from the sequestrating reservoir or evaluating the quantity of removed VOCs at a contaminated site. Based on the monitoring data, conceptual models were established and three cases were numerically simulated to determine whether or not reproducing the natural variations of gas concentration is possible. The simulated numerical model indicated that the atmospheric pressure and groundwater level data should be considered together, rather just only one boundary condition each (top or bottom). Reproducing the natural pattern of the target gas and understanding the gas flow and transport under real closed natural conditions would also be useful. The results demonstrated the need for numerical simulation to predict the natural pattern of the CO2 gas concentration before designing or performing actual CO2 release test or CO2 leakage monitoring in the wells of the vadose zone, as well as at the geologic carbon sequestration site.


Asunto(s)
Dióxido de Carbono , Agua Subterránea , Presión Atmosférica , Monitoreo del Ambiente , Modelos Teóricos
5.
J Environ Manage ; 237: 534-544, 2019 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-30825786

RESUMEN

Multi-level wells screened at different depths in the vadose zone were installed and used for CO2 and carbon isotope monitoring. Well CO2 time series data were collected along with subsurface and atmospheric parameters such as air pressure, temperature, wind speed, and moisture content. Our aim was to determine the natural factors affecting the variation of CO2 concentration and how the influence of these factors varies with time of day and seasons of the year. We were motivated to understand the cause and extent of CO2 natural fluctuations in vadose zone wells in order to separate natural variation from signals due to anthropogenic CO2 leaks anticipating future monitoring using these wells. Variations of seasonal mean and variance of CO2 concentrations at different depths seem to follow the diurnal trend of subsurface temperature changes that reflect the atmospheric temperature but with time delay and amplitude damping due to heat transport considerations. The temperature in the ground lags behind the change in the atmospheric temperature, thus, the deeper the depth, the longer the time delay and the smaller the amplitude of the change. Monitored seasonal variation as shown in Appendix A shows the temperature-dependent depth-dependent CO2 production in the soil zone indicating higher CO2 concentrations in the summer and fall seasons with high concentrations ranging between 10,990 and 51,600 ppm from spring to summer, and 40,100 and 17,760 ppm from fall to winter. As the temperature in the organic-rich topsoil layer changes from daytime to nighttime, the concentration of CO2 in the soils also changes dynamically in response to chemical and biological reactions. When a screened well is installed in the vadose zone the dynamic temporal and depth difference in CO2 production is further complicated by upward (out of the subsurface) or downward (into the subsurface) gas flow, which will amplify or attenuate the temporal and vertical biochemically produced differences. Nested wells screened at different depths in the vadose zone and wells fully screened through the vadose zone were used for comparison. In addition, experiments changing the well from open to surface air to sealed at the top were conducted. The flow rates of inhaled (downward) and exhaled (upward) gas were estimated based on multi-level monitoring data. Based on time-series monitoring data, we proposed a time-dependent conceptual model to explain the changes of CO2 concentration in wells. The conceptual model was tested through analytical model computations. This conceptual model of natural variation of CO2 will be helpful in utilizing the vadose zone well as a method for monitoring CO2 leakage from subsurface storage or anthropogenic CO2 -producing activities.


Asunto(s)
Dióxido de Carbono , Contaminantes del Suelo , Monitoreo del Ambiente , Estaciones del Año , Suelo , Viento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...