Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Front Bioeng Biotechnol ; 11: 1096086, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36741763

RESUMEN

Microbial electrochemical technologies (METs) employ microorganisms utilizing solid-state electrodes as either electron sink or electron source, such as in microbial electrosynthesis (MES). METs reaction rate is traditionally normalized to the electrode dimensions or to the electrolyte volume, but should also be normalized to biomass amount present in the system at any given time. In biofilm-based systems, a major challenge is to determine the biomass amount in a non-destructive manner, especially in systems operated in continuous mode and using 3D electrodes. We developed a simple method using a nitrogen balance and optical density to determine the amount of microorganisms in biofilm and in suspension at any given time. For four MES reactors converting CO2 to carboxylates, >99% of the biomass was present as biofilm after 69 days of reactor operation. After a lag phase, the biomass-specific growth rate had increased to 0.12-0.16 days-1. After 100 days of operation, growth became insignificant. Biomass-specific production rates of carboxylates varied between 0.08-0.37 molC molX -1d-1. Using biomass-specific rates, one can more effectively assess the performance of MES, identify its limitations, and compare it to other fermentation technologies.

2.
Bioresour Technol ; 347: 126650, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34974095

RESUMEN

Cathode overpotential is a key factor in the energy efficiency of bioelectrochemical systems. In this study the aim is to demonstrate the role of applied current density and electrode storage capacity on cathode overpotential. To do so, eight reactors using capacitive granular activated carbon as cathode material were operated. Four reactors were controlled at -5 A m-2 and four at -10 A m-2. Additionally, to evaluate the electrode storage capacity, weekly charge/discharge tests were conducted for half of the reactors at each applied current density. Results show that cathode potential as high as -0.50 V vs. Ag/AgCl can be reached. Furthermore, the resulting low cathode overpotential is both dependent on applied current density and employment (or not) of charge/discharge tests: reactors at -10 A m-2 without charge/discharge regimes did not result in increasing cathode potential whereas reactors at -5 A m-2 and at -10 A m-2 with charge/discharge regimes did.


Asunto(s)
Fuentes de Energía Bioeléctrica , Metano , Electrodos
4.
Front Microbiol ; 12: 669218, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34149654

RESUMEN

Up to now, computational modeling of microbial electrosynthesis (MES) has been underexplored, but is necessary to achieve breakthrough understanding of the process-limiting steps. Here, a general framework for modeling microbial kinetics in a MES reactor is presented. A thermodynamic approach is used to link microbial metabolism to the electrochemical reduction of an intracellular mediator, allowing to predict cellular growth and current consumption. The model accounts for CO2 reduction to acetate, and further elongation to n-butyrate and n-caproate. Simulation results were compared with experimental data obtained from different sources and proved the model is able to successfully describe microbial kinetics (growth, chain elongation, and product inhibition) and reactor performance (current density, organics titer). The capacity of the model to simulate different system configurations is also shown. Model results suggest CO2 dissolved concentration might be limiting existing MES systems, and highlight the importance of the delivery method utilized to supply it. Simulation results also indicate that for biofilm-driven reactors, continuous mode significantly enhances microbial growth and might allow denser biofilms to be formed and higher current densities to be achieved.

5.
Chempluschem ; 86(5): 763-777, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33973736

RESUMEN

Electrocatalytic metals and microorganisms can be combined for CO2 conversion in microbial electrosynthesis (MES). However, a systematic investigation on the nature of interactions between metals and MES is still lacking. To investigate this nature, we integrated a copper electrocatalyst, converting CO2 to formate, with microorganisms, converting CO2 to acetate. A co-catalytic (i. e. metabolic) relationship was evident, as up to 140 mg L-1 of formate was produced solely by copper oxide, while formate was also evidently produced by copper and consumed by microorganisms producing acetate. Due to non-metabolic interactions, current density decreased by over 4 times, though acetate yield increased by 3.3 times. Despite the antimicrobial role of copper, biofilm formation was possible on a pure copper surface. Overall, we show for the first time that a CO2 -reducing copper electrocatalyst can be combined with MES under biological conditions, resulting in metabolic and non-metabolic interactions.


Asunto(s)
Cobre/química , Biocatálisis , Biopelículas/crecimiento & desarrollo , Dióxido de Carbono/química , Dióxido de Carbono/metabolismo , Cupriavidus necator/metabolismo , Cupriavidus necator/fisiología , Electrodos , Transporte de Electrón , Formiatos/química , Formiatos/metabolismo
6.
Trends Biotechnol ; 39(4): 359-369, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33279279

RESUMEN

The valorization of CO2 to valuable products via microbial electrosynthesis (MES) is a technology transcending the disciplines of microbiology, (electro)chemistry, and engineering, bringing opportunities and challenges. As the field looks to the future, further emphasis is expected to be placed on engineering efficient reactors for biocatalysts, to thrive and overcome factors which may be limiting performance. Meanwhile, ample opportunities exist to take the lessons learned in traditional and adjacent electrochemical fields to shortcut learning curves. As the technology transitions into the next decade, research into robust and adaptable biocatalysts will then be necessary as reactors shape into larger and more efficient configurations, as well as presenting more extreme temperature, salinity, and pressure conditions.


Asunto(s)
Dióxido de Carbono , Electroquímica , Dióxido de Carbono/metabolismo , Electroquímica/tendencias , Electrodos , Microbiota/fisiología
7.
Acc Chem Res ; 53(2): 311-321, 2020 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-31990521

RESUMEN

Carbon-based products are crucial to our society, but their production from fossil-based carbon is unsustainable. Production pathways based on the reuse of CO2 will achieve ultimate sustainability. Furthermore, the costs of renewable electricity production are decreasing at such a high rate, that electricity is expected to be the main energy carrier from 2040 onward. Electricity-driven novel processes that convert CO2 into chemicals need to be further developed. Microbial electrosynthesis is a biocathode-driven process in which electroactive microorganisms derive electrons from solid-state electrodes to catalyze the reduction of CO2 or organics and generate valuable extracellular multicarbon reduced products. Microorganisms can be tuned to high-rate and selective product formation. Optimization and upscaling of microbial electrosynthesis to practical, real life applications is dependent upon performance improvement while maintaining low cost. Extensive biofilm development, enhanced electron transfer rate from solid-state electrodes to microorganisms and increased chemical production rate require optimized microbial consortia, efficient reactor designs, and improved cathode materials. This Account is about the development of different electrode materials purposely designed for improved microbial electrosynthesis: NanoWeb-RVC and EPD-3D. Both types of electrodes are biocompatible, highly conductive three-dimensional hierarchical porous structures. Both chemical vapor deposition (CVD) and electrophoretic deposition were used to grow homogeneous and uniform carbon nanotube layers on the honeycomb structure of reticulated vitreous carbon. The high surface area to volume ratio of these electrodes maximizes the available surface area for biofilm development, i.e., enabling an increased catalyst loading. Simultaneously, the nanostructure makes it possible for a continuous electroactive biofilm to be formed, with increased electron transfer rate and high Coulombic efficiencies. Fully autotrophic biofilms from mixed cultures developed on both types of electrodes rely on CO2 as the sole carbon source and the solid-state electrode as the unique energy supply. We present first the synthesis and characteristics of the bare electrodes. We then report the outstanding performance indicators of these novel biocathodes: current densities up to -200 A m-2 and acetate production rates up to 1330 g m-2 day-1, with electron and CO2 recoveries into acetate being very close to 100% for mature biofilms. The performance indicators are still among the highest reported by either purposely designed or commercially available biocathodes. Finally, we made use of the titration and off-gas analysis sensor (TOGA) to elucidate the electron transfer mechanism in these efficient biocathodes. Planktonic cells in the catholyte were found irrelevant for acetate production. We identified the electron transfer to be mediated by biologically induced H2. H2 is not detected in the headspace of the reactors, unless CO2 feeding is interrupted or the cathodes sterilized. Thus, the biofilm is extremely efficient in consuming the generated H2. Finally, we successfully demonstrated the use of a synthetic biogas mixture as a CO2 source. We thus proved the potential of microbial electrosynthesis for the simultaneous upgrading of biogas, while fixating CO2 via the production of acetate.


Asunto(s)
Acetatos/química , Biopelículas/crecimiento & desarrollo , Biotecnología/métodos , Dióxido de Carbono/química , Técnicas Electroquímicas/métodos , Nanotubos de Carbono/química , Acetatos/metabolismo , Electrodos , Porosidad
8.
ChemistryOpen ; 7(11): 878-884, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30410852

RESUMEN

The conversion of organic waste streams into carboxylic acids as renewable feedstocks results in relatively dilute aqueous streams. Carboxylic acids can be recovered from such streams by using liquid-liquid extraction. Hydrophobic ionic liquids (ILs) are novel extractants that can be used for carboxylic acid recovery. To integrate these ILs as in situ extractants in several biotechnological applications, the IL must be compatible with the bioprocesses. Herein the ILs [P666,14][oleate] and [N8888][oleate] were synthesized in water and their bioprocess compatibility was assessed by temporary exposure to an aqueous phase that contained methanogenic granular sludge. After transfer of the sludge into fresh medium, [P666,14][oleate]-exposed granules were completely inhibited. Granules exposed to [N8888][oleate] sustained anaerobic digestion activity, albeit moderately reduced. The IL contaminants, bromide (5-500 ppm) and oleate (10-4000 ppm), were shown not to inhibit the methanogenic conversion of acetate. [P666,14] was identified as a bioprocess-incompatible component. However, our results showed that [N8888][oleate] was bioprocess compatible and, therefore, has potential applications in bioprocesses.

9.
Environ Sci Technol ; 50(4): 1982-9, 2016 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-26810392

RESUMEN

The enhancement of microbial electrosynthesis (MES) of acetate from CO2 to performance levels that could potentially support practical implementations of the technology must go through the optimization of key design and operating conditions. We report that higher proton availability drastically increases the acetate production rate, with pH 5.2 found to be optimal, which will likely suppress methanogenic activity without inhibitor addition. Applied cathode potential as low as -1.1 V versus SHE still achieved 99% of electron recovery in the form of acetate at a current density of around -200 A m(-2). These current densities are leading to an exceptional acetate production rate of up to 1330 g m(-2) day(-1) at pH 6.7. Using highly open macroporous reticulated vitreous carbon electrodes with macropore sizes of about 0.6 mm in diameter was found to be optimal for achieving a good balance between total surface area available for biofilm formation and effective mass transfer between the bulk liquid and the electrode and biofilm surface. Furthermore, we also successfully demonstrated the use of a synthetic biogas mixture as carbon dioxide source, yielding similarly high MES performance as pure CO2. This would allow this process to be used effectively for both biogas quality improvement and conversion of the available CO2 to acetate.


Asunto(s)
Acetatos/síntesis química , Biotecnología/instrumentación , Biotecnología/métodos , Dióxido de Carbono/química , Acetatos/metabolismo , Biopelículas , Carbono/química , Dióxido de Carbono/metabolismo , Electrodos , Diseño de Equipo , Concentración de Iones de Hidrógeno
10.
Environ Sci Technol ; 49(22): 13566-74, 2015 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-26484732

RESUMEN

High product specificity and production rate are regarded as key success parameters for large-scale applicability of a (bio)chemical reaction technology. Here, we report a significant performance enhancement in acetate formation from CO2, reaching comparable productivity levels as in industrial fermentation processes (volumetric production rate and product yield). A biocathode current density of -102 ± 1 A m(-2) and an acetic acid production rate of 685 ± 30 (g m(-2) day(-1)) have been achieved in this study. High recoveries of 94 ± 2% of the CO2 supplied as the sole carbon source and 100 ± 4% of electrons into the final product (acetic acid) were achieved after development of a mature biofilm, reaching an elevated product titer of up to 11 g L(-1). This high product specificity is remarkable for mixed microbial cultures, which would make the product downstream processing easier and the technology more attractive. This performance enhancement was enabled through the combination of a well-acclimatized and enriched microbial culture (very fast start-up after culture transfer), coupled with the use of a newly synthesized electrode material, EPD-3D. The throwing power of the electrophoretic deposition technique, a method suitable for large-scale production, was harnessed to form multiwalled carbon nanotube coatings onto reticulated vitreous carbon to generate a hierarchical porous structure.


Asunto(s)
Ácido Acético/síntesis química , Biotecnología/métodos , Dióxido de Carbono/química , Electroforesis/métodos , Consorcios Microbianos/fisiología , Ácido Acético/metabolismo , Biopelículas/crecimiento & desarrollo , Carbono , Dióxido de Carbono/metabolismo , Técnicas Electroquímicas/métodos , Electrodos , Electrones , Electroforesis/instrumentación , Fermentación , Nanotubos de Carbono
11.
Bioelectrochemistry ; 102: 56-63, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25497168

RESUMEN

It is still unclear whether autotrophic microbial biocathode biofilms are able to self-regenerate under purely cathodic conditions without any external electron or organic carbon sources. Here we report on the successful development and long-term operation of an autotrophic biocathode whereby an electroactive biofilm was able to grow and sustain itself with CO2 as a sole carbon source and using the cathode as electron source, with H2 as sole product. From a small inoculum of 15 mg COD (in 250 mL), containing 30.3% Archaea, the bioelectrochemical system operating at -0.5 V vs. SHE enabled an estimated biofilm growth of 300 mg as COD over a period of 276 days. A dramatic change in the microbial population was observed during this period with Archaea disappearing completely (<0.1% of population). The predominant phyla enriched were Proteobacteria (57.3%), Firmicutes (12.4%), Bacteroidetes (11.6%) and Actinobacteria (1.1%). Up to 9.2 L H2 m(-2) day(-1) (1.88 A m(-2)) was achieved when the cathode potential was decreased to -0.75 V vs. SHE. This study demonstrates that purely autotrophic biofilm growth coupled to proton reduction to hydrogen alone can be sustained with a cathode as the sole electron source, while avoiding the development of H2-consuming microorganisms such as methanogens and acetogens.


Asunto(s)
Procesos Autotróficos , Bacterias/metabolismo , Fuentes de Energía Bioeléctrica/microbiología , Biopelículas/crecimiento & desarrollo , Hidrógeno/metabolismo , Bacterias/citología , Dióxido de Carbono/metabolismo , Supervivencia Celular , Electroquímica , Electrodos , Transporte de Electrón , Nitrógeno/metabolismo , Plancton/citología , Plancton/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA