Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
1.
J Clin Invest ; 134(9)2024 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-38690739
3.
Cancer Cell Int ; 24(1): 8, 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38178183

RESUMEN

Despite advancements in treating metastatic melanoma, many patients exhibit resistance to targeted therapies. Our study focuses on ATP1A1, a sodium pump subunit associated with cancer development. We aimed to assess ATP1A1 prognostic value in melanoma patients and examine the impact of its ligand, bufalin, on melanoma cell lines in vitro and in vivo. High ATP1A1 expression (IHC) correlated with reduced overall survival in melanoma patients. Resistance to BRAF inhibitor was linked to elevated ATP1A1 levels in patient biopsies (IHC, qPCR) and cell lines (Western blot, qPCR). Additionally, high ATP1A1 mRNA expression positively correlated with differentiation/pigmentation markers based on data from The Cancer Genome Atlas (TCGA) databases and Verfaillie proliferative gene signature analysis. Bufalin specifically targeted ATP1A1 in caveolae, (proximity ligation assay) and influenced Src phosphorylation (Western blot), thereby disrupting multiple signaling pathways (phosphokinase array). In vitro, bufalin induced apoptosis in melanoma cell lines by acting on ATP1A1 (siRNA experiments) and, in vivo, significantly impeded melanoma growth using a nude mouse xenograft model with continuous bufalin delivery via an osmotic pump. In conclusion, our study demonstrates that ATP1A1 could serve as a prognostic marker for patient survival and a predictive marker for response to BRAF inhibitor therapy. By targeting ATP1A1, bufalin inhibited cell proliferation, induced apoptosis in vitro, and effectively suppressed tumor development in mice. Thus, our findings strongly support ATP1A1 as a promising therapeutic target, with bufalin as a potential agent to disrupt its tumor-promoting activity.

5.
J Clin Med ; 12(19)2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37834839

RESUMEN

BACKGROUND: Head and neck cancer (HNC) is a complex affection. Nowadays, conventional treatments are associated with many side effects, reducing the patient's quality of life. Recent studies suggest that metformin, a first-line treatment for diabetes, could decrease cancer incidence and improve cancer-related survival rates. METHODS: This systematic review summarizes important data from studies evaluating metformin's contribution to preventing and treating HNC. RESULTS: The results suggest a protective effect of metformin in HNC. However, no consensus has been found on its therapeutic effects. Metformin seems to confer an improved cancer-related survival rate in a diabetic population, but compared to a non-diabetic population, the review could not identify any advantages. Nevertheless, no studies presented a negative impact. CONCLUSION: In conclusion, the results of this systematic review suggest that HNC patients may benefit from metformin. Indeed, it would reduce the HNC incidence. However, more studies are required to evaluate the effect on cancer-related survival rates.

6.
Int J Mol Sci ; 24(16)2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37628994

RESUMEN

Tumor-associated macrophages are key components of the tumor microenvironment and play important roles in the progression of head and neck cancer, leading to the development of effective strategies targeting immune cells in tumors. Our study demonstrated the prognostic potential of a new scoring system (Macroscore) based on the combination of the ratio and the sum of the high and low densities of M1 (CD80+) and M2 (CD163+) macrophages in a series of head and neck cancer patients, including a training population (n = 54) and a validation population (n = 19). Interestingly, the Macroscore outperformed TNM criteria and p16 status, showing a significant association with poor patient prognosis, and demonstrated significant predictive value for overall survival. Additionally, 3D coculture spheroids were established to analyze the crosstalk between cancer cells and monocytes/macrophages. Our data revealed that cancer cells can induce monocyte differentiation into protumoral M2 macrophages, creating an immunosuppressive microenvironment. This coculture also induced the production of immunosuppressive cytokines, such as IL10 and IL8, known to promote M2 polarization. Finally, we validated the ability of the macrophage subpopulations to induce apoptosis (M1) or support proliferation (M2) of cancer cells. Overall, our research highlights the potential of the Macroscore as a valuable prognostic biomarker to enhance the clinical management of patients and underscores the relevance of a spheroid model in gaining a better understanding of the mechanisms underlying cancer cell-macrophage interactions.


Asunto(s)
Neoplasias de Cabeza y Cuello , Humanos , Técnicas de Cocultivo , Comunicación Celular , Macrófagos , Macrófagos Asociados a Tumores , Inmunosupresores , Microambiente Tumoral
7.
Biology (Basel) ; 12(7)2023 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-37508329

RESUMEN

Cardiovascular diseases are the leading causes of death worldwide, closely followed by cancer. To investigate the impact of breast cancer cell lines (SKBR3, MCF-7, and MDA-MB-231) on endothelial cell adhesion, a blended medium containing 30% breast-cancer-conditioned medium was prepared. This medium was then exposed to human umbilical vein endothelial cells (HUVECs) and monocytes (THP-1) for 48 h. Homemade oxidized low-density lipoproteins (oxLDL) were optionally added to the blended medium. Immunofluorescence was performed to assess the expression of E-selectin, connexin-43, and ICAM-1 on HUVECs, as well as LOX-1, CD36, and CD162 on THP-1. Additionally, unoxidized LDL was exposed to the three breast cancer cell lines for 48 h, and the formation of oxLDL was quantified. Our results revealed an upregulation of all six adhesion markers involved in the initiation of atherosclerosis when HUVECs and THP-1 were exposed to the breast-cancer-conditioned medium. Furthermore, this expression was further increased by exposure to oxLDL. We also observed a significant elevation in oxLDL levels when LDL was exposed to breast cancer cells. In conclusion, our findings successfully demonstrate an increased LDL oxidation in the presence of breast cancer cells, accompanied by an augmented expression of receptors involved in atherosclerosis initiation. These findings shed new light on the clinically observed interplay between atherosclerosis and cancer.

8.
Cells ; 12(14)2023 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-37508519

RESUMEN

Despite important advances in the treatment of metastatic melanoma with the development of MAPK-targeted agents and immune checkpoint inhibitors, the majority of patients either do not respond to therapies or develop acquired resistance. Furthermore, there is no effective targeted therapy currently available for BRAF wild-type melanomas (approximately 50% of cutaneous melanoma). Thus, there is a compelling need for new efficient targeted therapies. Prohibitins (PHBs) are overexpressed in several types of cancers and implicated in the regulation of signaling networks that promote cell invasion and resistance to cell apoptosis. Herein, we show that PHBs are highly expressed in melanoma and are associated with not only poor survival but also with resistance to BRAFi/MEKi. We designed and identified novel specific PHB inhibitors that can inhibit melanoma cell growth in 3D spheroid models and a large panel of representative cell lines with different molecular subtypes, including those with intrinsic and acquired resistance to MAPKi, by significantly moderating both MAPK (CRAF-ERK axis) and PI3K/AKT pathways, and inducing apoptosis through the mitochondrial pathway and up-regulation of p53. In addition, autophagy inhibition enhances the antitumor efficacy of these PHB ligands. More important, these ligands can act in synergy with MAPKi to more efficiently inhibit cell growth and overcome drug resistance in both BRAF wild-type and mutant melanoma. In conclusion, targeting PHBs represents a very promising therapeutic strategy in melanoma, regardless of mutational status.


Asunto(s)
Melanoma , Neoplasias Cutáneas , Humanos , Melanoma/patología , Neoplasias Cutáneas/tratamiento farmacológico , Prohibitinas , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas B-raf/metabolismo , Ligandos , Inhibidores de Proteínas Quinasas/farmacología , Resistencia a Antineoplásicos
9.
Front Med (Lausanne) ; 10: 1149918, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37215708

RESUMEN

Melanoma is known to be a radioresistant cancer. Melanoma radioresistance can be due to several factors such as pigmentation, antioxidant defenses and high Deoxyribonucleic acid (DNA) repair efficacy. However, irradiation induces intracellular translocation of RTKs, including cMet, which regulates response to DNA damage activating proteins and promotes DNA repair. Accordingly, we hypothesized that co-targeting DNA repair (PARP-1) and relevant activated RTKs, c-Met in particular, may radiosensitize wild-type B-Raf Proto-Oncogene, Serine/Threonine Kinase (WTBRAF) melanomas where RTKs are often upregulated. Firstly, we found that PARP-1 is highly expressed in melanoma cell lines. PARP-1 inhibition by Olaparib or its KO mediates melanoma cell sensitivity to radiotherapy (RT). Similarly, specific inhibition of c-Met by Crizotinib or its KO radiosensitizes the melanoma cell lines. Mechanistically, we show that RT causes c-Met nuclear translocation to interact with PARP-1 promoting its activity. This can be reversed by c-Met inhibition. Accordingly, RT associated with the inhibition of both c-Met and PARP-1 resulted in a synergistic effect not only on tumor growth inhibition but also on tumor regrowth control in all animals following the stop of the treatment. We thus show that combining PARP and c-Met inhibition with RT appears a promising therapeutic approach in WTBRAF melanoma.

10.
Pharmaceutics ; 15(4)2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-37111590

RESUMEN

Functionalized iron oxide nanoparticles (IONPs) are increasingly being designed as a theranostic nanoplatform combining specific targeting, diagnosis by magnetic resonance imaging (MRI), and multimodal therapy by hyperthermia. The effect of the size and the shape of IONPs is of tremendous importance to develop theranostic nanoobjects displaying efficient MRI contrast agents and hyperthermia agent via the combination of magnetic hyperthermia (MH) and/or photothermia (PTT). Another key parameter is that the amount of accumulation of IONPs in cancerous cells is sufficiently high, which often requires the grafting of specific targeting ligands (TLs). Herein, IONPs with nanoplate and nanocube shapes, which are promising to combine magnetic hyperthermia (MH) and photothermia (PTT), were synthesized by the thermal decomposition method and coated with a designed dendron molecule to ensure their biocompatibility and colloidal stability in suspension. Then, the efficiency of these dendronized IONPs as contrast agents (CAs) for MRI and their ability to heat via MH or PTT were investigated. The 22 nm nanospheres and the 19 nm nanocubes presented the most promising theranostic properties (respectively, r2 = 416 s-1·mM-1, SARMH = 580 W·g-1, SARPTT = 800 W·g-1; and r2 = 407 s-1·mM-1, SARMH = 899 W·g-1, SARPTT = 300 W·g-1). MH experiments have proven that the heating power mainly originates from Brownian relaxation and that SAR values can remain high if IONPs are prealigned with a magnet. This raises hope that heating will maintain efficient even in a confined environment, such as in cells or in tumors. Preliminary in vitro MH and PTT experiments have shown the promising effect of the cubic shaped IONPs, even though the experiments should be repeated with an improved set-up. Finally, the grafting of a specific peptide (P22) as a TL for head and neck cancers (HNCs) has shown the positive impact of the TL to enhance IONP accumulation in cells.

11.
Int J Pharm ; 635: 122654, 2023 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-36720449

RESUMEN

A major challenge in nanomedicine is designing nanoplatforms (NPFs) to selectively target abnormal cells to ensure early diagnosis and targeted therapy. Among developed NPFs, iron oxide nanoparticles (IONPs) are good MRI contrast agents and can be used for therapy by hyperthermia and as radio-sensitizing agents. Active targeting is a promising method for selective IONPs accumulation in cancer tissues and is generally performed by using targeting ligands (TL). Here, a TL specific for the epidermal growth factor receptor (EGFR) is bound to the surface of dendronized IONPs to produce nanostructures able to specifically recognize EGFR-positive FaDu and 93-Vu head and neck cancer cell lines. Several parameters were optimized to ensure a high coupling yield and to adequately quantify the amount of TL per nanoparticle. Nanostructures with variable amounts of TL on the surface were produced and evaluated for their potential to specifically target and be thereafter internalized by cells. Compared to the bare NPs, the presence of the TL at the surface was shown to be effective to enhance their internalization and to play a role in the total amount of iron present per cell.


Asunto(s)
Neoplasias de Cabeza y Cuello , Hipertermia Inducida , Nanopartículas de Magnetita , Nanopartículas , Humanos , Ligandos , Factor de Crecimiento Epidérmico , Receptores ErbB/metabolismo , Nanopartículas/química , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Nanopartículas Magnéticas de Óxido de Hierro , Imagen por Resonancia Magnética/métodos , Nanopartículas de Magnetita/química
12.
Cancers (Basel) ; 14(22)2022 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-36428652

RESUMEN

The incidence of oropharyngeal cancers (OPSCCs) has continued to rise over the years, mainly due to human papillomavirus (HPV) infection. Although they were newly reclassified in the last TNM staging system, some groups still relapse and have poor prognoses. Based on their implication in oncogenesis, we investigated the density of cytotoxic and regulatory T cells, macrophages, and Langerhans cells in relation to p16 status, staging and survival of patients. Biopsies from 194 OPSCCs were analyzed for HPV by RT-qPCR and for p16 by immunohistochemistry, while CD8, FoxP3, CD68 and CD1a immunolabeling was performed in stromal (ST) and intratumoral (IT) compartments to establish optimal cutoff values for overall survival (OS). High levels of FoxP3 IT and CD1a ST positively correlated with OS and were observed in p16-positive and low-stage patients, respectively. Then, their associations with p16 and TNM were more efficient than the clinical parameters alone in describing patient survival. Using multivariate analyses, we demonstrated that the respective combination of FoxP3 or CD1a with p16 status or staging was an independent prognostic marker improving the outcome of OPSCC patients. These two combinations are significant prognostic signatures that may eventually be included in the staging stratification system to develop personalized treatment approaches.

13.
Cells ; 11(22)2022 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-36429091

RESUMEN

Potential intrinsic resistance mechanisms to regorafenib were explored after short exposure (3 days) on five CRC cell lines (HCT-116, SW1116, LS-1034, SW480, Caco-2). The observation of senescence-like features led to the investigation of a drug-initiated phenotype switch. Following long-term exposure (12 months) of HCT-116 and SW480 cell lines to regorafenib, we developed resistant models to explore acquired resistance. SW480 cells demonstrated senescent-like properties, including a cell arrest in the late G2/prophase cell cycle stage and a statistically significant decrease in the expression of G1 Cyclin-Dependent Kinase inhibitors and key cell cycle regulators. A specific senescence-associated secretome was also observed. In contrast, HCT-116 treated cells presented early senescent features and developed acquired resistance triggering EMT and a more aggressive phenotype over time. The gained migration and invasion ability by long-exposed cells was associated with the increased expression level of key cellular and extracellular EMT-related factors. The PI3K/AKT pathway was a significant player in the acquired resistance of HCT-116 cells, possibly related to a PI3KCA mutation in this cell line. Our findings provide new insights into the phenotypic plasticity of CRC cells able, under treatment pressure, to acquire a stable TIS or to use an early senescence state to undergo EMT.


Asunto(s)
Neoplasias Colorrectales , Transición Epitelial-Mesenquimal , Humanos , Transición Epitelial-Mesenquimal/genética , Fosfatidilinositol 3-Quinasas , Células CACO-2 , Resistencia a Antineoplásicos , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo
14.
Int J Mol Sci ; 23(20)2022 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-36293405

RESUMEN

Cardiovascular diseases (CVD) and cancers are the two main causes of death worldwide. The initiation and progression of atherosclerosis is, in large part, caused by oxidized low-density lipoproteins (oxLDL); interestingly, oxLDL may also play a role in cancer cell metabolism and migration. As oxLDL are generally obtained by tedious ultracentrifugation procedures, "home-made" oxLDL were obtained by (i) applying a purification kit to isolate LDL and VLDL from human plasma; (ii) isolating LDL from VLDL by gel permeation chromatography (GPC); and (iii) oxidating LDL through CuSO4 incubation. On three HPV-positive head and neck cancer cells (HNCC) (93VU-147T, UM-SCC47, and UPCI-SCC154), cell migration was assessed using Boyden chambers, the Wnt/ß-catenin pathway was analyzed by Western Blotting, and the expression of two oxLDL receptors, LOX-1 and CD36, in response to oxLDL exposure, was analysed by immunofluorescence. Our data indicate: (a) a non-significant difference between reference and "home-made" oxLDL; (b) a decreased migration, parallel to an inhibition of the ß-catenin pathway; and (c) an increase of CD36 and LOX-1 expression in all HNCC. In conclusion, we successfully produced oxLDL. Our results demonstrate a decrease in HNCC migration after oxLDL exposure, and an increased expression of LOX-1 and CD36 associated with lipid uptake.


Asunto(s)
Neoplasias de Cabeza y Cuello , Infecciones por Papillomavirus , Humanos , Receptores Depuradores de Clase E/metabolismo , Lipoproteínas LDL/farmacología , Lipoproteínas LDL/metabolismo , Antígenos CD36/metabolismo , Cateninas/metabolismo
15.
Pharmacol Res ; 184: 106442, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36096424

RESUMEN

Bufalin is an endogenous cardiotonic steroid, first discovered in toad venom but also found in the plasma of healthy humans, with anti-tumour activities in different cancer types. The current review is focused on its mechanisms of action and highlights its very large spectrum of effects both in vitro and in vivo. All leads to the conclusion that bufalin mediates its effects by affecting all the hallmarks of cancer and seems restricted to cancer cells avoiding side effects. Bufalin decreases cancer cell proliferation by acting on the cell cycle and inducing different mechanisms of cell death including apoptosis, necroptosis, autophagy and senescence. Bufalin also moderates metastasis formation by blocking migration and invasion as well as angiogenesis and by inducing a phenotype switch towards differentiation and decreasing cancer cell stemness. Regarding its various mechanisms of action in cancer cells, bufalin blocks overactivated signalling pathways and modifies cell metabolism. Moreover, bufalin gained lately a huge interest in the field of drug resistance by both reversing various drug resistance mechanisms and affecting the immune microenvironment. Together, these data support bufalin as a quite promising new anti-cancer drug candidate.


Asunto(s)
Venenos de Anfibios , Antineoplásicos , Bufanólidos , Glicósidos Cardíacos , Neoplasias , Venenos de Anfibios/farmacología , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Bufanólidos/farmacología , Bufanólidos/uso terapéutico , Glicósidos Cardíacos/farmacología , Línea Celular Tumoral , Proliferación Celular , Humanos , Neoplasias/tratamiento farmacológico , Microambiente Tumoral
17.
Biomedicines ; 10(7)2022 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-35884845

RESUMEN

The central nervous system is the location of metastases in more than 40% of patients with lung cancer, breast cancer and melanoma. These metastases are associated with one of the poorest prognoses in advanced cancer patients, mainly due to the lack of effective treatments. In this review, we explore the involvement of cytokines, including interleukins and chemokines, during the development of brain and leptomeningeal metastases from the epithelial-to-mesenchymal cell transition and blood-brain barrier extravasation to the interaction between cancer cells and cells from the brain microenvironment, including astrocytes and microglia. Furthermore, the role of the gut-brain axis on cytokine release during this process will also be addressed.

18.
Cells ; 11(13)2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35805132

RESUMEN

We assessed immune cell infiltrates to develop an immunoscore for prognosis and to investigate its correlation with the clinical data of patients with head and neck cancer. CD8, FoxP3, and CD68 markers were evaluated by immunohistochemistry in 258 carcinoma samples and positive cells were counted in stromal and intra-tumoral compartments. The RStudio software was used to assess optimal cut-offs to divide the population according to survival while the prognostic value was established by using Kaplan-Meier curves and Cox regression models for each immune marker alone and in combination. We found with univariate analysis that the infiltration of immune cells in both compartments was predictive for recurrence-free survival and overall survival. Multivariate analysis revealed that CD8+ density was an independent prognostic marker. Additionally, the combination of CD8, FoxP3, and CD68 in an immunoscore provided a significant association with overall survival (p = 0.002, HR = 9.87). Such an immunoscore stayed significant (p = 0.018, HR = 11.17) in a multivariate analysis in comparison to tumor stage and histological grade, which had lower prognostic values. Altogether, our analysis indicated that CD8, FoxP3, and CD68 immunoscore was a strong, independent, and significant prognostic marker that could be introduced into the landscape of current tools to improve the clinical management of head and neck cancer patients.


Asunto(s)
Carcinoma , Neoplasias de Cabeza y Cuello , Antígenos CD/metabolismo , Antígenos de Diferenciación Mielomonocítica/metabolismo , Biomarcadores , Linfocitos T CD8-positivos , Carcinoma/patología , Progresión de la Enfermedad , Factores de Transcripción Forkhead , Neoplasias de Cabeza y Cuello/patología , Humanos , Inmunohistoquímica , Linfocitos Infiltrantes de Tumor
19.
Int J Mol Sci ; 23(12)2022 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-35742830

RESUMEN

The head and neck tumor microenvironment (TME) is highly infiltrated with macrophages. More specifically, tumor-associated macrophages (TAM/M2-like) are one of the most critical components associated with poor overall survival in head and neck cancers (HNC). Two extreme states of macrophage phenotypes are described as conducting pro-inflammatory/anti-tumoral (M1) or anti-inflammatory/pro-tumoral (M2) activities. Moreover, specific metabolic pathways as well as oxidative stress responses are tightly associated with their phenotypes and functions. Hence, due to their plasticity, targeting M2 macrophages to repolarize in the M1 phenotype would be a promising cancer treatment. In this context, we evaluated macrophage infiltration in 60 HNC patients and demonstrated the high infiltration of CD68+ cells that were mainly related to CD163+ M2 macrophages. We then optimized a polarization protocol from THP1 monocytes, validated by specific gene and protein expression levels. In addition, specific actors of glutamine pathway and oxidative stress were quantified to indicate the use of glutaminolysis by M2 and the production of reactive oxygen species by M1. Finally, we evaluated and confirmed the plasticity of our model using M1 activators to repolarize M2 in M1. Overall, our study provides a complete reversible polarization protocol allowing us to further evaluate various reprogramming effectors targeting glutaminolysis and/or oxidative stress in macrophages.


Asunto(s)
Neoplasias de Cabeza y Cuello , Macrófagos , Neoplasias de Cabeza y Cuello/patología , Humanos , Macrófagos/metabolismo , Fenotipo , Microambiente Tumoral
20.
Cells ; 11(7)2022 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-35406721

RESUMEN

Melanoma cells are notorious for their high plasticity and ability to switch back and forth between various melanoma cell states, enabling the adaptation to sub-optimal conditions and therapeutics. This phenotypic plasticity, which has gained more attention in cancer research, is proposed as a new paradigm for melanoma progression. In this review, we provide a detailed and deep comprehensive recapitulation of the complex spectrum of phenotype switching in melanoma, the key regulator factors, the various and new melanoma states, and corresponding signatures. We also present an extensive description of the role of epigenetic modifications (chromatin remodeling, methylation, and activities of long non-coding RNAs/miRNAs) and metabolic rewiring in the dynamic switch. Furthermore, we elucidate the main role of the crosstalk between the tumor microenvironment (TME) and oxidative stress in the regulation of the phenotype switching. Finally, we discuss in detail several rational therapeutic approaches, such as exploiting phenotype-specific and metabolic vulnerabilities and targeting components and signals of the TME, to improve the response of melanoma patients to treatments.


Asunto(s)
Melanoma , MicroARNs , Epigénesis Genética , Humanos , Melanoma/patología , MicroARNs/genética , Fenotipo , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA