Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Food Res Int ; 187: 114334, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38763634

RESUMEN

Red-fleshed apple cultivars with an enhanced content of polyphenolic compounds have attracted increasing interest due to their promising health benefits. Here, we have analysed the polyphenolic content of young, red-fleshed apples (RFA) and optimised extraction conditions of phenolics by utilising natural deep eutectic solvents (NDES). We also compare the antioxidant, neuroprotective and antimicrobial activities of NDES- and methanol-extracted phenolics from young RFA. High-performance liquid chromatography coupled to high-resolution mass spectrometry (HPLC-HRMS) was used for phenolics identification and quantification. Besides young RFA, ripe red-fleshed, young and ripe white-fleshed apples were analysed, revealing that young RFA possess the highest phenolic content (2078.4 ± 4.0 mg gallic acid equivalent/100 g), and that ripe white-fleshed apples contain the least amount of phenolics (545.0 ± 32.0 mg gallic acid equivalent/100 g). The NDES choline chloride-glycerol containing 40 % w/w H2O gave similar yields at 40 °C as methanol. In addition, the polyphenolics profile, and bioactivities of the NDES extract from young RFA were comparable that of methanol extracts. Altogether, our data show that NDES extracts of young RFA are a promising source of bioactive polyphenolics with potential applications in diverse sectors, e.g., for functional food production, smart material engineering and natural therapies.


Asunto(s)
Antioxidantes , Disolventes Eutécticos Profundos , Frutas , Malus , Polifenoles , Malus/química , Polifenoles/análisis , Polifenoles/aislamiento & purificación , Antioxidantes/análisis , Antioxidantes/química , Cromatografía Líquida de Alta Presión , Frutas/química , Disolventes Eutécticos Profundos/química , Extractos Vegetales/química , Colina/química , Glicerol/química , Fármacos Neuroprotectores/aislamiento & purificación , Fármacos Neuroprotectores/química , Espectrometría de Masas
2.
ACS Meas Sci Au ; 3(3): 200-207, 2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37360034

RESUMEN

Anthocyanins are a subclass of plant-derived flavonoids that demonstrate immense structural heterogeneity which is challenging to capture in complex extracts by traditional liquid chromatography-mass spectrometry (MS)-based approaches. Here, we investigate direct injection ion mobility-MS as a rapid analytical tool to characterize anthocyanin structural features in red cabbage (Brassica oleracea) extracts. Within a 1.5 min sample run time, we observe localization of structurally similar anthocyanins and their isobars into discrete drift time regions based upon their degree of chemical modifications. Furthermore, drift time-aligned fragmentation enables simultaneous collection of MS, MS/MS, and collisional cross-section data for individual anthocyanin species down to a low picomole scale to generate structural identifiers for rapid identity confirmation. We finally identify anthocyanins in three other Brassica oleracea extracts based on red cabbage anthocyanin identifiers to demonstrate our high-throughput approach. Direct injection ion mobility-MS therefore provides wholistic structural information on structurally similar, and even isobaric, anthocyanins in complex plant extracts, which can inform the nutritional value of a plant and bolster drug discovery pipelines.

3.
Protein Sci ; 32(6): e4654, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37165541

RESUMEN

Methylenetetrahydrofolate reductase (MTHFR) is a key metabolic enzyme in colonization and virulence of Neisseria meningitidis, a causative agent of meningococcal diseases. Here, the biochemical and structural properties of MTHFR from a virulent strain of N. meningitidis serogroup B (NmMTHFR) were characterized. Unlike other orthologs, NmMTHFR functions as a unique homohexamer, composed of three homo-dimerization partners, as shown in our 2.7 Å resolution crystal structure. Six active sites were formed solely within monomers and located away from the oligomerization interfaces. Flavin adenine dinucleotide cofactor formed hydrogen bonds with conserved sidechains, positioning its isoalloxazine ring adjacent to the overlapping binding sites of nicotinamide adenine dinucleotide (NADH) coenzyme and CH2 -H4 folate substrate. NmMTHFR utilized NADH (Km = 44 µM) as an electron donor in the NAD(P)H-CH2 -H4 folate oxidoreductase assay, but not nicotinamide adenine dinucleotide phosphate (NADPH) which is the donor required in human MTHFR. In silico analysis and mutagenesis studies highlighted the significant difference in orientation of helix α7A (Phe215-Thr225) with that in the human enzyme. The extended sidechain of Met221 on helix α7A plays a role in stabilizing the folded structure of NADH in the hydrophobic box. This supports the NADH specificity by restricting the phosphate group of NADPH that causes steric clashes with Glu26. The movement of Met221 sidechain allows the CH2 -H4 folate substrate to bind. The unique topology of its NADH and CH2 -H4 folate binding pockets makes NmMTHFR a promising drug target for the development of new antimicrobial agents that may possess reduced off-target side effects.


Asunto(s)
Metilenotetrahidrofolato Reductasa (NADPH2) , Neisseria meningitidis , Humanos , Metilenotetrahidrofolato Reductasa (NADPH2)/genética , Metilenotetrahidrofolato Reductasa (NADPH2)/química , Metilenotetrahidrofolato Reductasa (NADPH2)/metabolismo , NAD/química , NADP , Modelos Moleculares , Ácido Fólico/química , Ácido Fólico/metabolismo , Neisseria meningitidis/metabolismo , Adenina
4.
ACS Chem Biol ; 18(5): 1115-1123, 2023 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-37146157

RESUMEN

Inverse agonists of peroxisome proliferator activated receptor γ (PPARγ) have emerged as safer alternatives to full agonists for their reduced side effects while still maintaining impressive insulin-sensitizing properties. To shed light on their molecular mechanism, we characterized the interaction of the PPARγ ligand binding domain with SR10221. X-ray crystallography revealed a novel binding mode of SR10221 in the presence of a transcriptionally repressing corepressor peptide, resulting in much greater destabilization of the activation helix, H12, than without corepressor peptide. Electron paramagnetic resonance provided in-solution complementary protein dynamic data, which revealed that for SR10221-bound PPARγ, H12 adopts a plethora of conformations in the presence of corepressor peptide. Together, this provides the first direct evidence for corepressor-driven ligand conformation for PPARγ and will allow the development of safer and more effective insulin sensitizers suitable for clinical use.


Asunto(s)
Insulinas , PPAR gamma , Proteínas Co-Represoras/metabolismo , Agonismo Inverso de Drogas , Ligandos , PPAR gamma/metabolismo , Conformación Proteica
5.
ACS Med Chem Lett ; 14(3): 285-290, 2023 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-36923924

RESUMEN

The rise of multidrug-resistant bacteria, such as Staphylococcus aureus, has highlighted global urgency for new classes of antibiotics. Biotin protein ligase (BPL), a critical metabolic regulatory enzyme, is an important target that shows significant promise in this context. Here we report the in silico docking, synthesis, and biological assay of a new series of N1-diphenylmethyl-1,2,3-triazole-based S. aureus BPL (SaBPL) inhibitors (8-19) designed to probe the adenine binding site and define whole-cell activity for this important class of inhibitor. Triazoles 13 and 14 with N1-propylamine and -butanamide substituents, respectively, were particularly potent with K i values of 10 ± 2 and 30 ± 6 nM, respectively, against SaBPL. A strong correlation was apparent between the K i values for 8-19 and the in silico docking, with hydrogen bonding to amino acid residues S128 and N212 of SaBPL likely contributing to potent inhibition.

6.
Biochemistry ; 62(4): 899-911, 2023 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-36745518

RESUMEN

Polyamines and polyamine-containing metabolites are involved in many cellular processes related to bacterial cell growth and survival. In Escherichia coli, the bifunctional enzyme glutathionylspermidine synthetase/amidase (GspSA) controls the production of glutathionylspermidine, which has a protective role against oxidative stress. E. coli also encodes two enzymes with homology to the synthetase domain of GspSA, YgiC, and YjfC; however, these do not catalyze the formation of glutathionylspermidine, and their catalytic function remained unknown. Here, we detail the structural and functional characterization of YgiC and YjfC. Using X-ray crystallography, the high-resolution crystal structures of YgiC and YjfC were obtained. This revealed that YgiC and YjfC possess multiple substitutions in key residues required for binding of glutathione in GspSA. Despite this difference, these enzymes share a similar active site structure to GspSA, suggesting that they catalyze the formation of an alternate peptide─spermidine conjugate. As the physiological substrates of YgiC and YjfC are unknown, this was probed using the peptide triglycine as a model substrate. A combination of enzyme activity assays and mass spectrometry revealed that YgiC and YjfC can function as peptide-spermidine ligases, forming a triglycine-spermidine conjugate. For both enzymes, conjugate formation was only observed in the presence of spermidine, but not other common polyamines, supporting that spermidine or a spermidine derivative is the physiological substrate. Importantly, since YgiC and YjfC are widely distributed in Gram-negative bacterial species, this suggests that these enzymes function in a conserved cellular process, representing a currently unknown aspect of bacterial polyamine metabolism.


Asunto(s)
Escherichia coli , Espermidina , Dominio Catalítico , Escherichia coli/metabolismo , Ligasas/metabolismo , Poliaminas/metabolismo , Proteínas de Escherichia coli/metabolismo
7.
ACS Infect Dis ; 8(12): 2579-2585, 2022 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-36399035

RESUMEN

Staphylococcus aureus, a key ESKAPE bacteria, is responsible for most blood-based infections and, as a result, is a major economic healthcare burden requiring urgent attention. Here, we report in silico docking, synthesis, and assay of N1-diphenylmethyl triazole-based analogues (7-13) designed to interact with the entire binding site of S. aureus biotin protein ligase (SaBPL), an enzyme critical for the regulation of gluconeogenesis and fatty acid biosynthesis. The second aryl ring of these compounds enhances both SaBPL potency and whole cell activity against S. aureus relative to previously reported mono-benzyl triazoles. Analogues 12 and 13, with added substituents to better interact with the adenine binding site, are particularly potent, with Ki values of 6.01 ± 1.01 and 8.43 ± 0.73 nM, respectively. These analogues are the most active triazole-based inhibitors reported to date and, importantly, inhibit the growth of a clinical isolate strain of S. aureus ATCC 49775, with minimum inhibitory concentrations of 1 and 8 µg/mL, respectively.


Asunto(s)
Antibacterianos , Proteínas Bacterianas , Liasas de Carbono-Nitrógeno , Staphylococcus aureus , Triazoles , Biotina , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/enzimología , Triazoles/química , Triazoles/farmacología , Antibacterianos/química , Antibacterianos/farmacología , Liasas de Carbono-Nitrógeno/antagonistas & inhibidores , Proteínas Bacterianas/antagonistas & inhibidores
8.
J Biol Chem ; 298(10): 102392, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35988643

RESUMEN

Enzymes involved in Staphylococcus aureus amino acid metabolism have recently gained traction as promising targets for the development of new antibiotics, however, not all aspects of this process are understood. The ATP-grasp superfamily includes enzymes that predominantly catalyze the ATP-dependent ligation of various carboxylate and amine substrates. One subset, ʟ-amino acid ligases (LALs), primarily catalyze the formation of dipeptide products in Gram-positive bacteria, however, their involvement in S. aureus amino acid metabolism has not been investigated. Here, we present the characterization of the putative ATP-grasp enzyme (SAOUHSC_02373) from S. aureus NCTC 8325 and its identification as a novel LAL. First, we interrogated the activity of SAOUHSC_02373 against a panel of ʟ-amino acid substrates. As a result, we identified SAOUHSC_02373 as an LAL with high selectivity for ʟ-aspartate and ʟ-methionine substrates, specifically forming an ʟ-aspartyl-ʟ-methionine dipeptide. Thus, we propose that SAOUHSC_02373 be assigned as ʟ-aspartate-ʟ-methionine ligase (LdmS). To further understand this unique activity, we investigated the mechanism of LdmS by X-ray crystallography, molecular modeling, and site-directed mutagenesis. Our results suggest that LdmS shares a similar mechanism to other ATP-grasp enzymes but possesses a distinctive active site architecture that confers selectivity for the ʟ-Asp and ʟ-Met substrates. Phylogenetic analysis revealed LdmS homologs are highly conserved in Staphylococcus and closely related Gram-positive Firmicutes. Subsequent genetic analysis upstream of the ldmS operon revealed several trans-acting regulatory elements associated with control of Met and Cys metabolism. Together, these findings support a role for LdmS in Staphylococcal sulfur amino acid metabolism.


Asunto(s)
Proteínas Bacterianas , Cisteína , Metionina , Péptido Sintasas , Staphylococcus aureus , Adenosina Trifosfato/metabolismo , Ácido Aspártico/química , Ácido Aspártico/metabolismo , Dipéptidos/biosíntesis , Metionina/química , Metionina/metabolismo , Filogenia , Staphylococcus aureus/enzimología , Proteínas Bacterianas/química , Proteínas Bacterianas/clasificación , Proteínas Bacterianas/genética , Péptido Sintasas/química , Péptido Sintasas/clasificación , Péptido Sintasas/genética , Cisteína/química , Cisteína/metabolismo
9.
Biochim Biophys Acta Proteins Proteom ; 1870(10): 140826, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35926717

RESUMEN

The deposition of α-synuclein (αS) aggregates in the gut and the brain is ever present in cases of Parkinson's disease. While the central non-amyloidogenic-component (NAC) region of αS plays a critical role in fibrilization, recent studies have identified a specific sequence from within the N-terminal region (NTR, residues 36-42) as a key modulator of αS fibrilization. Due to the lack of effective therapeutics which specifically target αS aggregates, we have developed a strategy to prevent the aggregation and subsequent toxicity attributed to αS fibrilization utilizing NTR targeting peptides. In this study, L- and D-isoforms of a hexa- (VAQKTV-Aib, 77-82 NAC) and heptapeptide (GVLYVGS-Aib, 36-42 NTR) containing a self-recognition component unique to αS, as well as a C-terminal disruption element, were synthesized to target primary sequence regions of αS that modulate fibrilization. The D-peptide that targets the NTR (NTR-TP-D) was shown by ThT fluorescence assays and TEM to be the most effective at preventing fibril formation and elongation, as well as increasing the abundance of soluble monomeric αS. In addition, NTR-TP-D alters the conformation of destabilised monomers into a less aggregation-prone state and reduces the hydrophobicity of αS fibrils via fibril remodelling. Furthermore, both NTR-TP isoforms alleviate the cytotoxic effects of αS aggregates in both Neuro-2a and Caco-2 cells. Together, this study highlights how targeting the NTR of αS using D-isoform peptide inhibitors may effectively combat the deleterious effects of αS fibrilization and paves the way for future drug design to utilise such an approach to treat Parkinson's disease.


Asunto(s)
Enfermedad de Parkinson , alfa-Sinucleína , Encéfalo/metabolismo , Células CACO-2 , Humanos , Enfermedad de Parkinson/tratamiento farmacológico , Péptidos/farmacología , alfa-Sinucleína/química
10.
Food Funct ; 13(16): 8585-8592, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35894256

RESUMEN

Magenta lilly pilly (Syzygium paniculatum) is an Australian native tree that produces berry fruits that are rich in phytochemicals reportedly beneficial to human health. Here we explored the biological activities of polyphenol-enriched extracts from the magenta lilly pilly fruit, benchmarking it against traditional sources including purple sweet potato and blackberry. We show that the extracts exert potent antioxidant and neuroprotective properties as well as antimicrobial activity against Staphylococcus aureus. The phenolic composition of lilly pilly was investigated using liquid chromatography coupled to mass spectrometry (HPLC-DAD-MS), revealing anthocyanins to be the primary component in high abundance compared to traditional anthocyanin-containing plants. Three anthocyanins from lilly pilly, along with their glycosylation patterns and stability, were characterised. Altogether, our results demonstrate the potential to exploit magenta lilly pilly fruits as a high-yielding source of phenolics with beneficial biological properties of potential interest for multiple downstream applications.


Asunto(s)
Polifenoles , Syzygium , Antocianinas/química , Antioxidantes/química , Australia , Cromatografía Líquida de Alta Presión , Frutas/química , Humanos , Fenoles/química , Extractos Vegetales/química , Polifenoles/análisis , Polifenoles/farmacología , Colorantes de Rosanilina/análisis , Syzygium/química
11.
Proteins ; 90(8): 1509-1520, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35247004

RESUMEN

The metabolic enzyme, enolase, plays a crucial role in the cytoplasm where it maintains cellular energy production within the process of glycolysis. The main role of enolase in glycolysis is to convert 2-phosphoglycerate to phosphoenolpyruvate; however, enolase can fulfill roles that deviate from this function. In pathogenic bacteria and fungi, enolase is also located on the cell surface where it functions as a virulence factor. Surface-expressed enolase is a receptor for human plasma proteins, including plasminogen, and this interaction facilitates nutrient acquisition and tissue invasion. A novel approach to developing antifungal drugs is to inhibit the formation of this complex. To better understand the structure of enolase and the interactions that may govern complex formation, we have solved the first X-ray crystal structure of enolase from Aspergillus fumigatus (2.0 Å) and have shown that it preferentially adopts a dimeric quaternary structure using native mass spectrometry. Two additional X-ray crystal structures of A. fumigatus enolase bound to the endogenous substrate 2-phosphoglycerate and product phosphoenolpyruvate were determined and kinetic characterization was carried out to better understand the details of its canonical function. From these data, we have produced a model of the A. fumigatus enolase and human plasminogen complex to provide structural insights into the mechanisms of virulence and aid future development of small molecules or peptidomimetics for antifungal drug design.


Asunto(s)
Aspergillus fumigatus , Fosfopiruvato Hidratasa , Antifúngicos , Humanos , Modelos Estructurales , Fosfoenolpiruvato/metabolismo , Fosfopiruvato Hidratasa/genética , Fosfopiruvato Hidratasa/metabolismo , Plasminógeno/metabolismo , Unión Proteica
12.
Acta Crystallogr D Struct Biol ; 78(Pt 2): 248-259, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-35102890

RESUMEN

Purine biosynthesis is a fundamental cellular process that sustains life by maintaining the intracellular pool of purines for DNA/RNA synthesis and signal transduction. As an integral determinant of fungal survival and virulence, the enzymes in this metabolic pathway have been pursued as potential antifungal targets. Guanosine monophosphate (GMP) synthase has been identified as an attractive target as it is essential for virulence in the clinically prominent fungal pathogens Aspergillus fumigatus, Candida albicans and Cryptococcus neoformans. However, a lack of structural information on GMP synthase has hindered drug-design efforts. Here, the first structure of a GMP synthase of fungal origin, that from A. fumigatus (at 2.3 Šresolution), is presented. Structural analysis of GMP synthase shows a distinct absence of the D1 dimerization domain that is present in the human homologue. Interestingly, A. fumigatus GMP synthase adopts a dimeric state, as determined by native mass spectrometry and gel-filtration chromatography, in contrast to the monomeric human homologue. Analysis of the substrate-binding pockets of A. fumigatus GMP synthase reveals key differences in the ATP- and XMP-binding sites that can be exploited for species-specific inhibitor drug design. Furthermore, the inhibitory activities of the glutamine analogues acivicin (IC50 = 16.6 ± 2.4 µM) and 6-diazo-5-oxo-L-norleucine (IC50 = 29.6 ± 5.6 µM) against A. fumigatus GMP synthase are demonstrated. Together, these data provide crucial structural information required for specifically targeting A. fumigatus GMP synthase for future antifungal drug-discovery endeavours.


Asunto(s)
Antifúngicos , Aspergillus fumigatus , Antifúngicos/metabolismo , Antifúngicos/farmacología , Aspergillus fumigatus/genética , Aspergillus fumigatus/metabolismo , Candida albicans/metabolismo , Ligasas de Carbono-Nitrógeno , Proteínas Fúngicas/metabolismo , Guanosina Monofosfato/metabolismo , Humanos
13.
FEBS J ; 289(1): 215-230, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34268903

RESUMEN

Under certain cellular conditions, functional proteins undergo misfolding, leading to a transition into oligomers which precede the formation of amyloid fibrils. Misfolding proteins are associated with neurodegenerative diseases such as Alzheimer's and Parkinson's diseases. While the importance of lipid membranes in misfolding and disease aetiology is broadly accepted, the influence of lipid membranes during therapeutic design has been largely overlooked. This study utilized a biophysical approach to provide mechanistic insights into the effects of two lipid membrane systems (anionic and zwitterionic) on the inhibition of amyloid-ß 40 and α-synuclein amyloid formation at the monomer, oligomer and fibril level. Large unilamellar vesicles (LUVs) were shown to increase fibrillization and largely decrease the effectiveness of two well-known polyphenol fibril inhibitors, (-)-epigallocatechin gallate (EGCG) and resveratrol; however, use of immunoblotting and ion mobility mass spectrometry revealed this occurs through varying mechanisms. Oligomeric populations in particular were differentially affected by LUVs in the presence of resveratrol, an elongation phase inhibitor, compared to EGCG, a nucleation targeted inhibitor. Ion mobility mass spectrometry showed EGCG interacts with or induces more compact forms of monomeric protein typical of off-pathway structures; however, binding is reduced in the presence of LUVs, likely due to partitioning in the membrane environment. Competing effects of the lipids and inhibitor, along with reduced inhibitor binding in the presence of LUVs, provide a mechanistic understanding of decreased inhibitor efficacy in a lipid environment. Together, this study highlights that amyloid inhibitor design may be misguided if effects of lipid membrane composition and architecture are not considered during development.


Asunto(s)
Precursor de Proteína beta-Amiloide/genética , Amiloide/genética , Enfermedad de Parkinson/genética , alfa-Sinucleína/genética , Amiloide/efectos de los fármacos , Amiloide/ultraestructura , Péptidos beta-Amiloides/genética , Péptidos beta-Amiloides/ultraestructura , Proteínas Amiloidogénicas/antagonistas & inhibidores , Proteínas Amiloidogénicas/genética , Catequina/análogos & derivados , Catequina/farmacología , Humanos , Membrana Dobles de Lípidos/metabolismo , Lípidos de la Membrana/genética , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/patología , Fosfolípidos/biosíntesis , Fosfolípidos/genética , Polifenoles/farmacología , alfa-Sinucleína/ultraestructura
14.
FEBS J ; 288(7): 2398-2417, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33089641

RESUMEN

Aspergillus fumigatus infections are rising at a disconcerting rate in tandem with antifungal resistance rates. Efforts to develop novel antifungals have been hindered by the limited knowledge of fundamental biological and structural mechanisms of A. fumigatus propagation. Biosynthesis of NTPs, the building blocks of DNA and RNA, is catalysed by NDK. An essential enzyme in A. fumigatus, NDK poses as an attractive target for novel antifungals. NDK exhibits broad substrate specificity across species, using both purines and pyrimidines, but the selectivity of such nucleosides in A. fumigatus NDK is unknown, impeding structure-guided inhibitor design. Structures of NDK in unbound- and NDP-bound states were solved, and NDK activity was assessed in the presence of various NTP substrates. We present the first instance of a unique substrate binding mode adopted by CDP and TDP specific to A. fumigatus NDK that illuminates the structural determinants of selectivity. Analysis of the oligomeric state reveals that A. fumigatus NDK adopts a hexameric assembly in both unbound- and NDP-bound states, contrary to previous reports suggesting it is tetrameric. Kinetic analysis revealed that ATP exhibited the greatest turnover rate (321 ± 33.0 s-1 ), specificity constant (626 ± 110.0 mm-1 ·s-1 ) and binding free energy change (-37.0 ± 3.5 kcal·mol-1 ). Comparatively, cytidine nucleosides displayed the slowest turnover rate (53.1 ± 3.7 s-1 ) and lowest specificity constant (40.2 ± 4.4 mm-1 ·s-1 ). We conclude that NDK exhibits nucleoside selectivity whereby adenine nucleosides are used preferentially compared to cytidine nucleosides, and these insights can be exploited to guide drug design. ENZYMES: Nucleoside-diphosphate kinase (EC 2.7.4.6). DATABASE: Structural data are available in the PDB database under the accession numbers: Unbound-NDK (6XP4), ADP-NDK (6XP7), GDP-NDK (6XPS), IDP-NDK (6XPU), UDP-NDK (6XPT), CDP-NDK (6XPW), TDP-NDK (6XPV).


Asunto(s)
Aspergillus fumigatus/genética , Nucleósido-Difosfato Quinasa/genética , Nucleósidos/genética , Conformación Proteica , Aspergilosis/genética , Aspergilosis/microbiología , Aspergilosis/patología , Aspergillus fumigatus/patogenicidad , Aspergillus fumigatus/ultraestructura , Escherichia coli/genética , Humanos , Cinética , Nucleósido-Difosfato Quinasa/química , Nucleósido-Difosfato Quinasa/ultraestructura , Nucleósidos/biosíntesis , Fosforilación/genética , Especificidad por Sustrato
15.
ACS Chem Neurosci ; 11(24): 4469-4477, 2020 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-33185419

RESUMEN

The association between protein aggregation and neurodegenerative diseases such as Parkinson's disease continues to be well interrogated but poorly elucidated at a mechanistic level. Nevertheless, the formation of amyloid fibrils from the destabilization and misfolding of native proteins is a molecular hallmark of disease. Consequently, there is ongoing demand for the identification and development of small molecules which prevent fibril formation. This study comprehensively assesses the inhibitory properties of two small molecules, the lignan polyphenol honokiol and the flavonoid 2',3',4'-trihydroxyflavone, in preventing α-synuclein fibrilization. The data shows that honokiol does not prevent α-synuclein fibril elongation, while 2',3',4'-trihydroxyflavone is effective at inhibiting fibril elongation and induces oligomer formation (for both wild-type α-synuclein and the disease-associated A53T mutation). Moreover, the exposed hydrophobicity of α-synuclein fibrils is reduced in the presence of 2',3',4'-trihydroxyflavone, whereas the addition of honokiol did not reduce the hydrophobicity of fibrils. In addition, ion mobility-mass spectrometry revealed that the conformation of α-synuclein wild-type and A53T monomers after disassembly is restored to a nonaggregation-prone state upon 2',3',4'-trihydroxyflavone treatment. Collectively, this study shows that the mechanisms by which these polyphenols and flavonoids prevent fibril formation are distinct by their interactions at various phases of the fibril-forming pathway. Furthermore, this study highlights how thorough biophysical interrogation of the interaction is required for understanding the ability of inhibitors to prevent protein aggregation associated with disease.


Asunto(s)
Flavonas , Lignanos , Amiloide , Compuestos de Bifenilo , Flavonas/farmacología , Lignanos/farmacología , Polifenoles/farmacología , alfa-Sinucleína
16.
ChemMedChem ; 15(16): 1505-1508, 2020 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-32558320

RESUMEN

Three photoswitchable tetrapeptides, based on a known synthetic antibacterial, were designed and synthesized to determine activity against Staphylococcus aureus. Each peptide contains an azobenzene photoswitch incorporated into either the N-terminal side chain (1), C-terminal side chain (2), or the C-terminus (3) to allow reversible switching between cis- and trans-enriched photostationary states. Biological assays revealed that the C-terminus azobenzene (3) possessed the most potent antibacterial activity, with an MIC of 1 µg/mL. In this study, net positive charge, hydrophobicity, position of the azobenzene, secondary structure, and amphiphilicity were all found to contribute to antibacterial activity, with each of these factors likely facilitating the peptide to disrupt the negatively charged bacterial lipid membrane. Hence, these short photoswitchable antibacterial tetrapeptides provide insights for the future design and synthesis of antibiotics targeting S. aureus.


Asunto(s)
Antibacterianos/farmacología , Compuestos Azo/farmacología , Péptidos/farmacología , Staphylococcus aureus/efectos de los fármacos , Antibacterianos/síntesis química , Antibacterianos/química , Compuestos Azo/química , Relación Dosis-Respuesta a Droga , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Péptidos/síntesis química , Péptidos/química , Relación Estructura-Actividad
17.
Biochem J ; 477(11): 2039-2054, 2020 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-32427336

RESUMEN

Amyloid beta peptide (Aß42) aggregation in the brain is thought to be responsible for the onset of Alzheimer's disease, an insidious condition without an effective treatment or cure. Hence, a strategy to prevent aggregation and subsequent toxicity is crucial. Bio-inspired peptide-based molecules are ideal candidates for the inhibition of Aß42 aggregation, and are currently deemed to be a promising option for drug design. In this study, a hexapeptide containing a self-recognition component unique to Aß42 was designed to mimic the ß-strand hydrophobic core region of the Aß peptide. The peptide is comprised exclusively of D-amino acids to enhance specificity towards Aß42, in conjunction with a C-terminal disruption element to block the recruitment of Aß42 monomers on to fibrils. The peptide was rationally designed to exploit the synergy between the recognition and disruption components, and incorporates features such as hydrophobicity, ß-sheet propensity, and charge, that all play a critical role in the aggregation process. Fluorescence assays, native ion-mobility mass spectrometry (IM-MS) and cell viability assays were used to demonstrate that the peptide interacts with Aß42 monomers and oligomers with high specificity, leading to almost complete inhibition of fibril formation, with essentially no cytotoxic effects. These data define the peptide-based inhibitor as a potentially potent anti-amyloid drug candidate for this hitherto incurable disease.


Asunto(s)
Enfermedad de Alzheimer/terapia , Péptidos beta-Amiloides/química , Fragmentos de Péptidos/química , Agregación Patológica de Proteínas , Humanos , Espectrometría de Movilidad Iónica , Conformación Proteica en Lámina beta
18.
J Proteomics ; 216: 103680, 2020 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-32028038

RESUMEN

Snake venoms contain complex mixtures of proteins vital for the survival of venomous snakes. Aligned with their diverse pharmacological activities, the protein compositions of snake venoms are highly variable, and efforts to characterise the primary structures of such proteins are ongoing. Additionally, a significant knowledge gap exists in terms of the higher-order protein structures which modulate venom potency, posing a challenge for successful therapeutic applications. Here we use a multifaceted mass spectrometry approach to characterise proteins from venoms of Collett's snake Pseudechis colletti and the puff adder Bitis arietans. Following chromatographic fractionation and bottom-up proteomics analysis, native mass spectrometry identified, among other components, a non-covalent l-amino acid oxidase dimer in the P. colletti venom and a C-type lectin tetramer in the B. arietans venom. Furthermore, a covalently-linked phospholipase A2 (PLA2) dimer was identified in P. colletti venom, from which the PLA2 species were shown to adopt compact geometries using ion mobility measurements. Interestingly, we show that the dimeric PLA2 possesses greater bioactivity than the monomeric PLA2s. This work contributes to ongoing efforts cataloguing components of snake venoms, and notably, emphasises the importance of understanding higher-order venom protein interactions and the utility of a combined mass spectrometric approach for this task. SIGNIFICANCE: The protein constituents of snake venoms represent a sophisticated cocktail of biologically active molecules ideally suited for further exploration in drug design and development. Despite ongoing efforts to characterise the diverse protein components of such venoms there is still much work required in this area, particularly in moving from simply describing the protein primary sequence to providing an understanding of quaternary structure. The combined proteomic and native mass spectrometry workflow utilised here gives new insights into higher order protein structures in selected snake venoms, and can underpin further investigation into the protein interactions which govern snake venom specificity and potency.


Asunto(s)
Proteómica , Venenos de Serpiente , Animales , Elapidae , Espectrometría de Masas , Proteínas
19.
Biochem J ; 477(3): 629-643, 2020 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-31939601

RESUMEN

Deficits in protein homeostasis (proteostasis) are typified by the partial unfolding or misfolding of native proteins leading to amorphous or fibrillar aggregation, events that have been closely associated with diseases including Alzheimer's and Parkinson's diseases. Molecular chaperones are intimately involved in maintaining proteostasis, and their mechanisms of action are in part dependent on the morphology of aggregation-prone proteins. This study utilised native ion mobility-mass spectrometry to provide molecular insights into the conformational properties and dynamics of a model protein, α-lactalbumin (α-LA), which aggregates in an amorphous or amyloid fibrillar manner controlled by appropriate selection of experimental conditions. The molecular chaperone ß-casein (ß-CN) is effective at inhibiting amorphous and fibrillar aggregation of α-LA at sub-stoichiometric ratios, with greater efficiency against fibril formation. Analytical size-exclusion chromatography demonstrates the interaction between ß-CN and amorphously aggregating α-LA is stable, forming a soluble high molecular weight complex, whilst with fibril-forming α-LA the interaction is transient. Moreover, ion mobility-mass spectrometry (IM-MS) coupled with collision-induced unfolding (CIU) revealed that α-LA monomers undergo distinct conformational transitions during the initial stages of amorphous (order to disorder) and fibrillar (disorder to order) aggregation. The structural heterogeneity of monomeric α-LA during fibrillation is reduced in the presence of ß-CN along with an enhancement in stability, which provides a potential means for preventing fibril formation. Together, this study demonstrates how IM-MS and CIU can investigate the unfolding of proteins as well as examine transient and dynamic protein-chaperone interactions, and thereby provides detailed insight into the mechanism of chaperone action and proteostasis mechanisms.


Asunto(s)
Caseínas , Lactalbúmina , Chaperonas Moleculares , Agregado de Proteínas/fisiología , Amiloide/metabolismo , Caseínas/química , Caseínas/metabolismo , Lactalbúmina/antagonistas & inhibidores , Lactalbúmina/química , Lactalbúmina/metabolismo , Espectrometría de Masas , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Pliegue de Proteína , Proteostasis/fisiología
20.
Anal Chem ; 92(1): 683-689, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31840983

RESUMEN

Enrichment strategies are designed for the pretreatment of low-abundance glycans and glycopeptides prior to mass spectrometric (MS) analysis. Here, a tip-based strategy is being reported for the enrichment of glycopeptides and glycans using a piperazine modified polymeric monolithic tip. The tip is fabricated using the free radical polymerization. Fast separation (2 min) is achieved under optimized conditions with 20 cycles per step of loading, incubation, washing, and elution followed by MALDI-MS analysis. A total of 25, 22, and 34 glycopeptides covering all glycosylation sites are enriched by the modified tips from tryptic digests of horse radish peroxidase, chicken avidin, and human immunoglobulin G, respectively. Piperazine exhibits high selectivity 1:400 horse radish peroxidase/bovine serum albumin, sensitivity to 100 attomoles, recovery 89.51%, and batch to batch reproducibility (RSD > 1) in glycopeptides enrichment. Piperazine tips also enrich glycans from ovalbumin and human immunoglobulin G. High selectivity (1:1200, ovalbumin/BSA) and detection limit of 100 attomole is attained for glycans and furthermore 58 glycans are enriched from human serum. Thus, piperazine tips can be used as an enrichment tool for swift, cost-effective routine analysis of biological samples for separation of glycopeptides and glycans.


Asunto(s)
Glicopéptidos/sangre , Polímeros/química , Polisacáridos/sangre , Animales , Bovinos , Glicopéptidos/metabolismo , Peroxidasa de Rábano Silvestre/química , Peroxidasa de Rábano Silvestre/metabolismo , Humanos , Polisacáridos/metabolismo , Albúmina Sérica Bovina/química , Albúmina Sérica Bovina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA