Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Asunto principal
Intervalo de año de publicación
1.
Math Biosci ; 366: 109088, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37863283

RESUMEN

Early Afterdepolarizations (EADs) are abnormal behaviors that can lead to cardiac failure and even cardiac death. In this paper we investigate the occurrence and development of these phenomena in a reduced Luo-Rudy cardiac model. Through a comprehensive dynamical analysis, we map out the distinct patterns observed in the parametric plane, differentiating between normal beats without EADs and pathological beats with EADs. By examining the bifurcation structure of the model, we elucidate the dynamical elements associated with these patterns and their transitions. Using a fast-slow analysis, we explore the emergence and evolution of EADs in the model. Notably, our approach combines the two commonly used fast-slow approaches (1-slow-2-fast and 2-slow-1-fast), and we show how both approaches together provide a more complete understanding of this phenomenon.


Asunto(s)
Miocitos Cardíacos , Potenciales de Acción
2.
Phys Rev E ; 102(4-1): 042118, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33212583

RESUMEN

In this work we generalize and combine Gibbs and von Neumann approaches to build, for the first time, a rigorous definition of entropy for hybrid quantum-classical systems. The resulting function coincides with the two cases above when the suitable limits are considered. Then, we apply the MaxEnt principle for this hybrid entropy function and obtain the natural candidate for the hybrid canonical ensemble (HCE). We prove that the suitable classical and quantum limits of the HCE coincide with the usual classical and quantum canonical ensembles since the whole scheme admits both limits, thus showing that the MaxEnt principle is applicable and consistent for hybrid systems.

3.
J Chem Theory Comput ; 14(8): 3975-3985, 2018 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-29944373

RESUMEN

In previous works, we introduced a geometric route to define our Ehrenfest statistical dynamics (ESD) and we proved that, for a simple toy model, the resulting ESD does not preserve purity. We now take a step further: we investigate decoherence and pointer basis in the ESD model by considering some uncertainty in the degrees of freedom of a simple but realistic molecular model, consisting of two classical cores and one quantum electron. The Ehrenfest model is sometimes discarded as a valid approximation to nonadiabatic coupled quantum-classical dynamics because it does not describe the decoherence in the quantum subsystem. However, any rigorous statistical analysis of the Ehrenfest dynamics, such as the described ESD formalism, proves that decoherence exists. In this article, decoherence in ESD is studied by measuring the change in the quantum subsystem purity and by analyzing the appearance of the pointer basis to which the system decoheres, which for our example is composed of the eigenstates of the electronic Hamiltonian.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...