Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 42(7): 112682, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37355988

RESUMEN

Human bone marrow (BM) plasma cells are heterogeneous, ranging from newly arrived antibody-secreting cells (ASCs) to long-lived plasma cells (LLPCs). We provide single-cell transcriptional resolution of 17,347 BM ASCs from five healthy adults. Fifteen clusters are identified ranging from newly minted ASCs (cluster 1) expressing MKI67 and high major histocompatibility complex (MHC) class II that progress to late clusters 5-8 through intermediate clusters 2-4. Additional ASC clusters include the following: immunoglobulin (Ig) M predominant (likely of extra-follicular origin), interferon responsive, and high mitochondrial activity. Late ASCs are distinguished by G2M checkpoints, mammalian target of rapamycin (mTOR) signaling, distinct metabolic pathways, CD38 expression, utilization of tumor necrosis factor (TNF)-receptor superfamily members, and two distinct maturation pathways involving TNF signaling through nuclear factor κB (NF-κB). This study provides a single-cell atlas and molecular roadmap of LLPC maturation trajectories essential in the BM microniche. Altogether, understanding BM ASC heterogeneity in health and disease enables development of new strategies to enhance protective ASCs and to deplete pathogenic ones.


Asunto(s)
Médula Ósea , Células Plasmáticas , Adulto , Humanos , Células Productoras de Anticuerpos/metabolismo , Antígenos de Histocompatibilidad Clase II/metabolismo , Análisis de la Célula Individual , Células de la Médula Ósea
2.
bioRxiv ; 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36711623

RESUMEN

Human bone marrow (BM) plasma cells are heterogeneous, ranging from newly arrived antibody-secreting cells (ASC) to long-lived plasma cells (LLPC). We provide single cell transcriptional resolution of 17,347 BM ASC from 5 healthy adults. Fifteen clusters were identified ranging from newly minted ASC (cluster 1) expressing MKI67 and high MHC Class II that progressed to late clusters 5-8 through intermediate clusters 2-4. Additional clusters included early and late IgM-predominant ASC of likely extra-follicular origin; IFN-responsive; and high mitochondrial activity ASC. Late ASCs were distinguished by differences in G2M checkpoints, MTOR signaling, distinct metabolic pathways, CD38 expression, and utilization of TNF-receptor superfamily members. They mature through two distinct paths differentiated by the degree of TNF signaling through NFKB. This study provides the first single cell resolution atlas and molecular roadmap of LLPC maturation, thereby providing insight into differentiation trajectories and molecular regulation of these essential processes in the human BM microniche. This information enables investigation of the origin of protective and pathogenic antibodies in multiple diseases and development of new strategies targeted to the enhancement or depletion of the corresponding ASC. One Sentence Summary: The single cell transcriptomic atlas of human bone marrow plasma cell heterogeneity shows maturation of class-switched early and late subsets, specific IgM and Interferon-driven clusters, and unique heterogeneity of the late subsets which encompass the long-lived plasma cells.

3.
Sci Data ; 9(1): 722, 2022 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-36433985

RESUMEN

Plasmodium cynomolgi causes zoonotic malarial infections in Southeast Asia and this parasite species is important as a model for Plasmodium vivax and Plasmodium ovale. Each of these species produces hypnozoites in the liver, which can cause relapsing infections in the blood. Here we present methods and data generated from iterative longitudinal systems biology infection experiments designed and performed by the Malaria Host-Pathogen Interaction Center (MaHPIC) to delve deeper into the biology, pathogenesis, and immune responses of P. cynomolgi in the Macaca mulatta host. Infections were initiated by sporozoite inoculation. Blood and bone marrow samples were collected at defined timepoints for biological and computational experiments and integrative analyses revolving around primary illness, relapse illness, and subsequent disease and immune response patterns. Parasitological, clinical, haematological, immune response, and -omic datasets (transcriptomics, proteomics, metabolomics, and lipidomics) including metadata and computational results have been deposited in public repositories. The scope and depth of these datasets are unprecedented in studies of malaria, and they are projected to be a F.A.I.R., reliable data resource for decades.


Asunto(s)
Malaria , Plasmodium cynomolgi , Animales , Interacciones Huésped-Patógeno , Macaca mulatta , Plasmodium cynomolgi/fisiología , Esporozoítos , Biología de Sistemas , Zoonosis
4.
Front Cell Infect Microbiol ; 12: 986314, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36093191

RESUMEN

The resilience of Plasmodium vivax, the most widely-distributed malaria-causing parasite in humans, is attributed to its ability to produce dormant liver forms known as hypnozoites, which can activate weeks, months, or even years after an initial mosquito bite. The factors underlying hypnozoite formation and activation are poorly understood, as is the parasite's influence on the host hepatocyte. Here, we shed light on transcriptome-wide signatures of both the parasite and the infected host cell by sequencing over 1,000 P. vivax-infected hepatocytes at single-cell resolution. We distinguish between replicating schizonts and hypnozoites at the transcriptional level, identifying key differences in transcripts encoding for RNA-binding proteins associated with cell fate. In infected hepatocytes, we show that genes associated with energy metabolism and antioxidant stress response are upregulated, and those involved in the host immune response downregulated, suggesting both schizonts and hypnozoites alter the host intracellular environment. The transcriptional markers in schizonts, hypnozoites, and infected hepatocytes revealed here pinpoint potential factors underlying dormancy and can inform therapeutic targets against P. vivax liver-stage infection.


Asunto(s)
Malaria Vivax , Parásitos , Animales , Hepatocitos/parasitología , Humanos , Malaria Vivax/parasitología , Plasmodium vivax/genética , ARN , Transcriptoma
5.
Front Cell Infect Microbiol ; 12: 888496, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35811680

RESUMEN

Plasmodium knowlesi poses a health threat throughout Southeast Asian communities and currently causes most cases of malaria in Malaysia. This zoonotic parasite species has been studied in Macaca mulatta (rhesus monkeys) as a model for severe malarial infections, chronicity, and antigenic variation. The phenomenon of Plasmodium antigenic variation was first recognized during rhesus monkey infections. Plasmodium-encoded variant proteins were first discovered in this species and found to be expressed at the surface of infected erythrocytes, and then named the Schizont-Infected Cell Agglutination (SICA) antigens. SICA expression was shown to be spleen dependent, as SICA expression is lost after P. knowlesi is passaged in splenectomized rhesus. Here we present data from longitudinal P. knowlesi infections in rhesus with the most comprehensive analysis to date of clinical parameters and infected red blood cell sequestration in the vasculature of tissues from 22 organs. Based on the histopathological analysis of 22 tissue types from 11 rhesus monkeys, we show a comparative distribution of parasitized erythrocytes and the degree of margination of the infected erythrocytes with the endothelium. Interestingly, there was a significantly higher burden of parasites in the gastrointestinal tissues, and extensive margination of the parasites along the endothelium, which may help explain gastrointestinal symptoms frequently reported by patients with P. knowlesi malarial infections. Moreover, this margination was not observed in splenectomized rhesus that were infected with parasites not expressing the SICA proteins. This work provides data that directly supports the view that a subpopulation of P. knowlesi parasites cytoadheres and sequesters, likely via SICA variant antigens acting as ligands. This process is akin to the cytoadhesive function of the related variant antigen proteins, namely Erythrocyte Membrane Protein-1, expressed by Plasmodium falciparum.


Asunto(s)
Malaria , Plasmodium knowlesi , Plasmodium , Aglutinación , Animales , Antígenos , Membrana Eritrocítica , Eritrocitos/parasitología , Macaca mulatta , Malaria/parasitología , Plasmodium knowlesi/genética , Esquizontes
6.
Life Sci Alliance ; 5(3)2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34952892

RESUMEN

Antibody secreting cells (ASCs) circulate after vaccination and infection and migrate to the BM where a subset known as long-lived plasma cells (LLPCs) persists and secrete antibodies for a lifetime. The mechanisms by which circulating ASCs become LLPCs are not well elucidated. Here, we show that human blood ASCs have distinct morphology, transcriptomes, and epigenetics compared with BM LLPCs. Compared with blood ASCs, BM LLPCs have decreased nucleus/cytoplasm ratio but increased endoplasmic reticulum and numbers of mitochondria. LLPCs up-regulate pro-survival genes MCL1, BCL2, and BCL-XL while simultaneously down-regulating pro-apoptotic genes HRK1, CASP3, and CASP8 Consistent with reduced gene expression, the pro-apoptotic gene loci are less accessible in LLPCs. Of the pro-survival genes, only BCL2 is concordant in gene up-regulation and loci accessibility. Using a novel in vitro human BM mimetic, we show that blood ASCs undergo similar morphological and molecular changes that resemble ex vivo BM LLPCs. Overall, our study demonstrates that early-minted blood ASCs in the BM microniche must undergo morphological, transcriptional, and epigenetic changes to mature into apoptotic-resistant LLPCs.


Asunto(s)
Epigénesis Genética , Regulación de la Expresión Génica , Impresión Genómica , Células Plasmáticas/citología , Células Plasmáticas/metabolismo , Adolescente , Adulto , Formación de Anticuerpos/genética , Formación de Anticuerpos/inmunología , Apoptosis/genética , Biomarcadores , Supervivencia Celular , Femenino , Heterogeneidad Genética , Histocitoquímica , Humanos , Inmunofenotipificación , Masculino , Persona de Mediana Edad , Células Plasmáticas/inmunología , Células Plasmáticas/ultraestructura , Factores de Tiempo , Adulto Joven
7.
Front Cell Infect Microbiol ; 12: 1058926, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36710962

RESUMEN

Previous studies have suggested that a relationship exists between severity and transmissibility of malaria and variations in the gut microbiome, yet only limited information exists on the temporal dynamics of the gut microbial community during a malarial infection. Here, using a rhesus macaque model of relapsing malaria, we investigate how malaria affects the gut microbiome. In this study, we performed 16S sequencing on DNA isolated from rectal swabs of rhesus macaques over the course of an experimental malarial infection with Plasmodium cynomolgi and analyzed gut bacterial taxa abundance across primary and relapsing infections. We also performed metabolomics on blood plasma from the animals at the same timepoints and investigated changes in metabolic pathways over time. Members of Proteobacteria (family Helicobacteraceae) increased dramatically in relative abundance in the animal's gut microbiome during peak infection while Firmicutes (family Lactobacillaceae and Ruminococcaceae), Bacteroidetes (family Prevotellaceae) and Spirochaetes amongst others decreased compared to baseline levels. Alpha diversity metrics indicated decreased microbiome diversity at the peak of parasitemia, followed by restoration of diversity post-treatment. Comparison with healthy subjects suggested that the rectal microbiome during acute malaria is enriched with commensal bacteria typically found in the healthy animal's mucosa. Significant changes in the tryptophan-kynurenine immunomodulatory pathway were detected at peak infection with P. cynomolgi, a finding that has been described previously in the context of P. vivax infections in humans. During relapses, which have been shown to be associated with less inflammation and clinical severity, we observed minimal disruption to the gut microbiome, despite parasites being present. Altogether, these data suggest that the metabolic shift occurring during acute infection is associated with a concomitant shift in the gut microbiome, which is reversed post-treatment.


Asunto(s)
Microbioma Gastrointestinal , Malaria Vivax , Malaria , Plasmodium cynomolgi , Animales , Humanos , Macaca mulatta/genética , Macaca mulatta/metabolismo , Malaria/parasitología , Malaria Vivax/parasitología , Plasmodium cynomolgi/genética , Plasmodium cynomolgi/metabolismo , Bacterias/genética , ARN Ribosómico 16S/genética
8.
Malar J ; 20(1): 486, 2021 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-34969401

RESUMEN

BACKGROUND: Kra monkeys (Macaca fascicularis), a natural host of Plasmodium knowlesi, control parasitaemia caused by this parasite species and escape death without treatment. Knowledge of the disease progression and resilience in kra monkeys will aid the effective use of this species to study mechanisms of resilience to malaria. This longitudinal study aimed to define clinical, physiological and pathological changes in kra monkeys infected with P. knowlesi, which could explain their resilient phenotype. METHODS: Kra monkeys (n = 15, male, young adults) were infected intravenously with cryopreserved P. knowlesi sporozoites and the resulting parasitaemias were monitored daily. Complete blood counts, reticulocyte counts, blood chemistry and physiological telemetry data (n = 7) were acquired as described prior to infection to establish baseline values and then daily after inoculation for up to 50 days. Bone marrow aspirates, plasma samples, and 22 tissue samples were collected at specific time points to evaluate longitudinal clinical, physiological and pathological effects of P. knowlesi infections during acute and chronic infections. RESULTS: As expected, the kra monkeys controlled acute infections and remained with low-level, persistent parasitaemias without anti-malarial intervention. Unexpectedly, early in the infection, fevers developed, which ultimately returned to baseline, as well as mild to moderate thrombocytopenia, and moderate to severe anaemia. Mathematical modelling and the reticulocyte production index indicated that the anaemia was largely due to the removal of uninfected erythrocytes and not impaired production of erythrocytes. Mild tissue damage was observed, and tissue parasite load was associated with tissue damage even though parasite accumulation in the tissues was generally low. CONCLUSIONS: Kra monkeys experimentally infected with P. knowlesi sporozoites presented with multiple clinical signs of malaria that varied in severity among individuals. Overall, the animals shared common mechanisms of resilience characterized by controlling parasitaemia 3-5 days after patency, and controlling fever, coupled with physiological and bone marrow responses to compensate for anaemia. Together, these responses likely minimized tissue damage while supporting the establishment of chronic infections, which may be important for transmission in natural endemic settings. These results provide new foundational insights into malaria pathogenesis and resilience in kra monkeys, which may improve understanding of human infections.


Asunto(s)
Resistencia a la Enfermedad , Macaca fascicularis , Malaria/veterinaria , Enfermedades de los Monos/parasitología , Parasitemia/veterinaria , Plasmodium knowlesi/fisiología , Animales , Estudios Longitudinales , Malaria/parasitología , Masculino , Parasitemia/parasitología
9.
Bio Protoc ; 11(23): e4253, 2021 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-35005096

RESUMEN

Control of malaria caused by Plasmodium vivax can be improved by the discovery and development of novel drugs against the parasite's liver stage, which includes relapse-causing hypnozoites. Several recent reports describe breakthroughs in the culture of the P. vivax liver stage in 384-well microtiter plates, with the goal of enabling a hypnozoite-focused drug screen. Herein we describe assay details, protocol developments, and different assay formats to interrogate the chemical sensitivity of the P. vivax liver stage in one such medium-throughput platform. The general assay protocol includes seeding of primary human hepatocytes which are infected with P. vivax sporozoites generated from the feeding of Anopheles dirus mosquitoes on patient isolate bloodmeals. This protocol is unique in that, after source drug plates are supplied, all culture-work steps have been optimized to preclude the need for automated liquid handling, thereby allowing the assay to be performed within resource-limited laboratories in malaria-endemic countries. Throughput is enhanced as complex culture methods, such as extracellular matrix overlays, multiple cell types in co-culture, or hepatic spheroids, are excluded as the workflow consists entirely of routine culture methods for adherent cells. Furthermore, installation of a high-content imager at the study site enables assay data to be read and transmitted with minimal logistical delays. Herein we detail distinct assay improvements which increase data quality, provide a means to limit the confounding effect of hepatic metabolism on assay data, and detect activity of compounds with a slow-clearance phenotype. Graphical abstract: Overview of P. vivax liver stage screening assay performed at the Institute Pasteur of Cambodia.

10.
Cell Rep ; 30(12): 4041-4051.e4, 2020 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-32209467

RESUMEN

During the 2013-2016 Ebola virus (EBOV) epidemic, a significant number of patients admitted to Ebola treatment units were co-infected with Plasmodium falciparum, a predominant agent of malaria. However, there is no consensus on how malaria impacts EBOV infection. The effect of acute Plasmodium infection on EBOV challenge was investigated using mouse-adapted EBOV and a biosafety level 2 (BSL-2) model virus. We demonstrate that acute Plasmodium infection protects from lethal viral challenge, dependent upon interferon gamma (IFN-γ) elicited as a result of parasite infection. Plasmodium-infected mice lacking the IFN-γ receptor are not protected. Ex vivo incubation of naive human or mouse macrophages with sera from acutely parasitemic rodents or macaques programs a proinflammatory phenotype dependent on IFN-γ and renders cells resistant to EBOV infection. We conclude that acute Plasmodium infection can safeguard against EBOV by the production of protective IFN-γ. These findings have implications for anti-malaria therapies administered during episodic EBOV outbreaks in Africa.


Asunto(s)
Resistencia a la Enfermedad/inmunología , Ebolavirus/fisiología , Fiebre Hemorrágica Ebola/complicaciones , Fiebre Hemorrágica Ebola/inmunología , Interferón gamma/metabolismo , Malaria/complicaciones , Plasmodium falciparum/fisiología , Animales , Femenino , Glicoproteínas/metabolismo , Fiebre Hemorrágica Ebola/prevención & control , Macrófagos Peritoneales/patología , Malaria/parasitología , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Receptor de Interferón alfa y beta/metabolismo , Receptores de Interferón/deficiencia , Receptores de Interferón/metabolismo , Vesiculovirus/fisiología , Receptor de Interferón gamma
11.
Front Immunol ; 10: 2138, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31572364

RESUMEN

Antibody secreting cells (ASCs) are terminally differentiated cells of the humoral immune response and must adapt morphologically, transcriptionally, and metabolically to maintain high-rates of antibody (Ab) secretion. ASCs differentiate from activated B cells in lymph nodes and transiently circulate in the blood. Most of the circulating ASCs undergo apoptosis, but a small fraction of early ASCs migrate to the bone marrow (BM) and eventually mature into long-lived plasma cells (LLPCs). LLPC survival is controlled both intrinsically and extrinsically. Their differentiation and maintenance programs are governed by many intrinsic mechanisms involving anti-apoptosis, autophagy, and metabolism. The extrinsic factors involved in LLPC generation include BM stromal cells, cytokines, and chemokines, such as APRIL, IL-6, and CXCL12. In humans, the BM CD19-CD38hiCD138+ ASC subset is the main repository of LLPCs, and our recent development of an in vitro BM mimic provides essential tools to study environmental cues that support LLPC survival and the critical molecular mechanisms of maturation from early minted blood ASCs to LLPCs. In this review, we summarize the evidence of LLPC generation and maintenance and provide novel paradigms of LLPC maturation.


Asunto(s)
Citocinas/inmunología , Activación de Linfocitos , Células Plasmáticas/inmunología , Antígenos CD/inmunología , Células de la Médula Ósea/citología , Células de la Médula Ósea/inmunología , Supervivencia Celular/inmunología , Humanos , Células Plasmáticas/citología , Células del Estroma/citología , Células del Estroma/inmunología
12.
PLoS Pathog ; 15(9): e1007974, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31536608

RESUMEN

Plasmodium relapses are attributed to the activation of dormant liver-stage parasites and are responsible for a significant number of recurring malaria blood-stage infections. While characteristic of human infections caused by P. vivax and P. ovale, their relative contribution to malaria disease burden and transmission remains poorly understood. This is largely because it is difficult to identify 'bona fide' relapse infections due to ongoing transmission in most endemic areas. Here, we use the P. cynomolgi-rhesus macaque model of relapsing malaria to demonstrate that clinical immunity can form after a single sporozoite-initiated blood-stage infection and prevent illness during relapses and homologous reinfections. By integrating data from whole blood RNA-sequencing, flow cytometry, P. cynomolgi-specific ELISAs, and opsonic phagocytosis assays, we demonstrate that this immunity is associated with a rapid recall response by memory B cells that expand and produce anti-parasite IgG1 that can mediate parasite clearance of relapsing parasites. The reduction in parasitemia during relapses was mirrored by a reduction in the total number of circulating gametocytes, but importantly, the cumulative proportion of gametocytes increased during relapses. Overall, this study reveals that P. cynomolgi relapse infections can be clinically silent in macaques due to rapid memory B cell responses that help to clear asexual-stage parasites but still carry gametocytes.


Asunto(s)
Inmunidad Humoral , Malaria/inmunología , Malaria/parasitología , Plasmodium cynomolgi/inmunología , Plasmodium cynomolgi/patogenicidad , Animales , Anticuerpos Antiprotozoarios/sangre , Linfocitos B/inmunología , Perfilación de la Expresión Génica , Interacciones Huésped-Parásitos/genética , Interacciones Huésped-Parásitos/inmunología , Humanos , Inmunidad Humoral/genética , Inmunoglobulina G/sangre , Memoria Inmunológica/genética , Macaca mulatta , Malaria/genética , Malaria Vivax/genética , Malaria Vivax/inmunología , Malaria Vivax/parasitología , Masculino , Parasitemia/genética , Parasitemia/inmunología , Parasitemia/parasitología , Plasmodium vivax/inmunología , Plasmodium vivax/patogenicidad , Recurrencia , Esporozoítos/inmunología , Esporozoítos/patogenicidad
13.
Nat Commun ; 10(1): 3635, 2019 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-31406175

RESUMEN

The ability to culture pathogenic organisms substantially enhances the quest for fundamental knowledge and the development of vaccines and drugs. Thus, the elaboration of a protocol for the in vitro cultivation of the erythrocytic stages of Plasmodium falciparum revolutionized research on this important parasite. However, for P. vivax, the most widely distributed and difficult to treat malaria parasite, a strict preference for reticulocytes thwarts efforts to maintain it in vitro. Cultivation of P. cynomolgi, a macaque-infecting species phylogenetically close to P. vivax, was briefly reported in the early 1980s, but not pursued further. Here, we define the conditions under which P. cynomolgi can be adapted to long term in vitro culture to yield parasites that share many of the morphological and phenotypic features of P. vivax. We further validate the potential of this culture system for high-throughput screening to prime and accelerate anti-P. vivax drug discovery efforts.


Asunto(s)
Eritrocitos/parasitología , Macaca/parasitología , Malaria/veterinaria , Enfermedades de los Monos/parasitología , Plasmodium cynomolgi/crecimiento & desarrollo , Animales , Anopheles/parasitología , Malaria/parasitología , Malaria/transmisión
14.
JCI Insight ; 4(9)2019 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-31045574

RESUMEN

Chronic malaria is a major public health problem and significant challenge for disease eradication efforts. Despite its importance, the biological factors underpinning chronic malaria are not fully understood. Recent studies have shown that host metabolic state can influence malaria pathogenesis and transmission, but its role in chronicity is not known. Here, with the goal of identifying distinct modifications in the metabolite profiles of acute versus chronic malaria, metabolomics was performed on plasma from Plasmodium-infected humans and nonhuman primates with a range of parasitemias and clinical signs. In rhesus macaques infected with Plasmodium coatneyi, significant alterations in amines, carnitines, and lipids were detected during a high parasitemic acute phase and many of these reverted to baseline levels once a low parasitemic chronic phase was established. Plasmodium gene expression, studied in parallel in the macaques, revealed transcriptional changes in amine, fatty acid, lipid and energy metabolism genes, as well as variant antigen genes. Furthermore, a common set of amines, carnitines, and lipids distinguished acute from chronic malaria in plasma from human Plasmodium falciparum cases. In summary, distinct host-parasite metabolic environments have been uncovered that characterize acute versus chronic malaria, providing insights into the underlying host-parasite biology of malaria disease progression.


Asunto(s)
Aminoácidos/sangre , Aminoácidos/metabolismo , Metabolismo de los Lípidos , Lípidos/sangre , Malaria/metabolismo , Adolescente , Adulto , Anciano , Animales , Modelos Animales de Enfermedad , Ácidos Grasos/sangre , Ácidos Grasos/metabolismo , Femenino , Expresión Génica , Glicerofosfolípidos/sangre , Glicerofosfolípidos/metabolismo , Interacciones Huésped-Parásitos/fisiología , Humanos , Macaca mulatta , Malaria/genética , Masculino , Metaboloma , Persona de Mediana Edad , Parasitemia , Plasmodium , Plasmodium falciparum , Adulto Joven
15.
Open Forum Infect Dis ; 6(3): ofz021, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30937329

RESUMEN

BACKGROUND: Plasmodium vivax can cause severe malaria with multisystem organ dysfunction and death. Clinical reports suggest that parasite accumulation in tissues may contribute to pathogenesis and disease severity, but direct evidence is scarce. METHODS: We present quantitative parasitological and histopathological analyses of tissue sections from a cohort of naive, mostly splenectomized Saimiri boliviensis infected with P vivax to define the relationship of tissue parasite load and histopathology. RESULTS: The lung, liver, and kidney showed the most tissue injury, with pathological presentations similar to observations reported from autopsies. Parasite loads correlated with the degree of histopathologic changes in the lung and liver tissues. In contrast, kidney damage was not associated directly with parasite load but with the presence of hemozoin, an inflammatory parasite byproduct. CONCLUSIONS: This analysis supports the use of the S boliviensis infection model for performing detailed histopathological studies to better understand and potentially design interventions to treat serious clinical manifestations caused by P vivax.

16.
Malar J ; 17(1): 410, 2018 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-30400896

RESUMEN

BACKGROUND: Malaria is a major mosquito transmitted, blood-borne parasitic disease that afflicts humans. The disease causes anaemia and other clinical complications, which can lead to death. Plasmodium vivax is known for its reticulocyte host cell specificity, but many gaps in disease details remain. Much less is known about the closely related species, Plasmodium cynomolgi, although it is naturally acquired and causes zoonotic malaria. Here, a computational model is developed based on longitudinal analyses of P. cynomolgi infections in nonhuman primates to investigate the erythrocyte dynamics that is pertinent to understanding both P. cynomolgi and P. vivax malaria in humans. METHODS: A cohort of five P. cynomolgi infected Rhesus macaques (Macaca mulatta) is studied, with individuals exhibiting a plethora of clinical outcomes, including varying levels of anaemia. A discrete recursive model with age structure is developed to replicate the dynamics of P. cynomolgi blood-stage infections. The model allows for parasitic reticulocyte preference and assumes an age preference among the mature RBCs. RBC senescence is modelled using a hazard function, according to which RBCs have a mean lifespan of 98 ± 21 days. RESULTS: Based on in vivo data from three cohorts of macaques, the computational model is used to characterize the reticulocyte lifespan in circulation as 24 ± 5 h (n = 15) and the rate of RBC production as 2727 ± 209 cells/h/µL (n = 15). Analysis of the host responses reveals a pre-patency increase in the number of reticulocytes. It also allows the quantification of RBC removal through the bystander effect. CONCLUSIONS: The evident pre-patency increase in reticulocytes is due to a shift towards the release of younger reticulocytes, which could result from a parasite-induced factor meant to increase reticulocyte availability and satisfy the parasite's tropism, which has an average value of 32:1 in this cohort. The number of RBCs lost due to the bystander effect relative to infection-induced RBC losses is 62% for P. cynomolgi infections, which is substantially lower than the value of 95% previously determined for another simian species, Plasmodium coatneyi.


Asunto(s)
Eritrocitos/parasitología , Macaca mulatta , Malaria/fisiopatología , Enfermedades de los Monos/fisiopatología , Plasmodium cynomolgi/fisiología , Animales , Malaria/parasitología , Masculino , Modelos Biológicos , Enfermedades de los Monos/parasitología , Reticulocitos/parasitología
18.
Proteomics ; 18(2)2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29266845

RESUMEN

The development of vaccines against malaria and serodiagnostic tests for detecting recent exposure requires tools for antigen discovery and suitable animal models. The protein microarray is a high-throughput, sample sparing technique, with applications in infectious disease research, clinical diagnostics, epidemiology, and vaccine development. We recently demonstrated Qdot-based indirect immunofluorescence together with portable optical imager ArrayCAM using single isotype detection could replicate data using the conventional laser confocal scanner system. We developed a multiplexing protocol for simultaneous detection of IgG, IgA, and IgM and compared samples from a controlled human malaria infection model with those from controlled malaria infections of Aotus nancymaae, a widely used non-human primate model of human malaria. IgG profiles showed the highest concordance in number of reactive antigens; thus, of the 139 antigens recognized by human IgG antibody, 111 were also recognized by Aotus monkeys. Interestingly, IgA profiles were largely non-overlapping. Finally, on the path toward wider deployment of the portable platform, we show excellent correlations between array data obtained in five independent laboratories around the United States using the multiplexing protocol (R2 : 0.60-0.92). This study supports the use of this platform for wider deployment, particularly in endemic areas where such a tool will have the greatest impact on global human health.


Asunto(s)
Inmunoensayo/métodos , Inmunoglobulina G/análisis , Malaria Falciparum/diagnóstico , Análisis por Matrices de Proteínas/métodos , Proteoma/análisis , Animales , Aotidae , Técnica del Anticuerpo Fluorescente Indirecta , Humanos , Inmunoglobulina A/análisis , Inmunoglobulina M/análisis , Malaria Falciparum/metabolismo , Malaria Falciparum/parasitología , Plasmodium falciparum/aislamiento & purificación , Puntos Cuánticos
19.
Malar J ; 16(1): 486, 2017 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-29202752

RESUMEN

After publication of the article [1], it was brought to our attention that several symbols were missing from Fig. 1, including some cited in the figure's key. The correct version of the figure is shown below and has now been updated in the original article.

20.
Malar J ; 16(1): 384, 2017 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-28938907

RESUMEN

BACKGROUND: Mild to severe anaemia is a common complication of malaria that is caused in part by insufficient erythropoiesis in the bone marrow. This study used systems biology to evaluate the transcriptional and alterations in cell populations in the bone marrow during Plasmodium cynomolgi infection of rhesus macaques (a model of Plasmodium vivax malaria) that may affect erythropoiesis. RESULTS: An appropriate erythropoietic response did not occur to compensate for anaemia during acute cynomolgi malaria despite an increase in erythropoietin levels. During this period, there were significant perturbations in the bone marrow transcriptome. In contrast, relapses did not induce anaemia and minimal changes in the bone marrow transcriptome were detected. The differentially expressed genes during acute infection were primarily related to ongoing inflammatory responses with significant contributions from Type I and Type II Interferon transcriptional signatures. These were associated with increased frequency of intermediate and non-classical monocytes. Recruitment and/or expansion of these populations was correlated with a decrease in the erythroid progenitor population during acute infection, suggesting that monocyte-associated inflammation may have contributed to anaemia. The decrease in erythroid progenitors was associated with downregulation of genes regulated by GATA1 and GATA2, two master regulators of erythropoiesis, providing a potential molecular basis for these findings. CONCLUSIONS: These data suggest the possibility that malarial anaemia may be driven by monocyte-associated disruption of GATA1/GATA2 function in erythroid progenitors resulting in insufficient erythropoiesis during acute infection.


Asunto(s)
Médula Ósea/fisiopatología , Eritropoyesis/inmunología , Malaria Vivax/fisiopatología , Malaria/fisiopatología , Monocitos/inmunología , Plasmodium cynomolgi/fisiología , Animales , Médula Ósea/parasitología , Humanos , Macaca mulatta , Malaria/parasitología , Malaria Vivax/parasitología , Masculino , Modelos Animales , Monocitos/parasitología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA