Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-38766036

RESUMEN

Single-molecule localization microscopy (SMLM) uses activatable or switchable fluorophores to create non-diffraction limited maps of molecular location in biological samples. Despite the utility of this imaging technique, the portfolio of appropriate labels for SMLM remains limited. Here, we describe a general strategy for the construction of "glitter bomb" labels by simply combining rhodamine and coumarin dyes though an amide bond. Condensation of the ortho-carboxyl group on the pendant phenyl ring of rhodamine dyes with a 7-aminocoumarin yields photochromic or spontaneously blinking fluorophores depending on the parent rhodamine structure. We apply this strategy to prepare labels useful super-resolution experiments in fixed cells using different attachment techniques. This general glitter bomb strategy should lead to improved labels for SMLM, ultimately enabling the creation of detailed molecular maps in biological samples.

2.
J Biomol Tech ; 32(3): 121-133, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-35027870

RESUMEN

The worldwide coronavirus disease 2019 pandemic has had devastating effects on health, healthcare infrastructure, social structure, and economics. One of the limiting factors in containing the spread of this virus has been the lack of widespread availability of fast, inexpensive, and reliable methods for testing of individuals. Frequent screening for infected and often asymptomatic people is a cornerstone of pandemic management plans. Here, we introduce 2 pH-sensitive "LAMPshade" dyes as novel readouts in an isothermal Reverse Transcriptase Loop-mediated isothermal AMPlification amplification assay for severe acute respiratory syndrome coronavirus 2 RNA. The resulting JaneliaLAMP assay is robust, simple, inexpensive, and has low technical requirements, and we describe its use and performance in direct testing of contrived and clinical samples without RNA extraction.


Asunto(s)
COVID-19 , ARN Viral , Colorantes , Humanos , Concentración de Iones de Hidrógeno , Técnicas de Diagnóstico Molecular , Técnicas de Amplificación de Ácido Nucleico , ARN Viral/genética , SARS-CoV-2 , Sensibilidad y Especificidad , Estructura Social
3.
ACS Chem Biol ; 14(6): 1077-1090, 2019 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-30997987

RESUMEN

Development of single-molecule localization microscopy (SMLM) has sparked a revolution in biological imaging, allowing "super-resolution" fluorescence microscopy below the diffraction limit of light. The past decade has seen an explosion in not only optical hardware for SMLM but also the development or repurposing of fluorescent proteins and small-molecule fluorescent probes for this technique. In this review, written by chemists for chemists, we detail the history of single-molecule localization microscopy and collate the collection of probes with demonstrated utility in SMLM. We hope it will serve as a primer for probe choice in localization microscopy as well as an inspiration for the development of new fluorophores that enable imaging of biological samples with exquisite detail.


Asunto(s)
Colorantes Fluorescentes/química , Microscopía Fluorescente/métodos , Imagen Individual de Molécula/métodos , Fármacos Fotosensibilizantes/química
4.
ACS Appl Mater Interfaces ; 8(49): 34089-34097, 2016 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-27960436

RESUMEN

Chemisorption of an organic monolayer to tune the surface properties of a transparent conductive oxide (TCO) electrode can improve the performance of organic electronic devices that rely on efficient charge transfer between an organic active layer and a TCO contact. Here, a series of perylene diimides (PDIs) was synthesized and used to study relationships between monolayer structure/properties and electron transfer kinetics at PDI-modified indium-tin oxide (ITO) electrodes. In these PDI molecules, one of the imide substituents is a benzene ring bearing a phosphonic acid (PA) and the other is a bulky aryl group that is twisted out of the plane of the PDI core. The size of the bulky aryl group and the substitution of the benzene ring bearing the PA were both varied, which altered the extent of aggregation when these molecules were absorbed as monolayer films (MLs) on ITO, as revealed by both attenuated total reflectance (ATR) and total internal reflection fluorescence spectra. Polarized ATR measurements indicate that, in these MLs, the long axis of the PDI core is tilted at an angle of 33-42° relative to the surface normal; the tilt angle increased as the degree of bulky substitution increased. Rate constants for electron transfer (ks,opt) between these redox-active modifiers and ITO were determined by potential-modulated ATR spectroscopy. As the degree of PDI aggregation was reduced, ks,opt declined, which is attributed to a reduction in the lateral electron self-exchange rate between adsorbed PDI molecules, as well as the heterogeneous conductivity of the ITO electrode surface. Photoelectrochemical measurements using a dissolved aluminum phthalocyanine as an electron donor showed that ITO modified with any of these PDIs is a more effective electron-collecting electrode than bare ITO.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...