Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Cell Death Dis ; 15(4): 293, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664366

RESUMEN

Research and development on Nectin-4 antibody-drug conjugates (ADC) have been greatly accelerated since the approval of enfortumab vedotin to treat uroepithelial cancer. During the course of this study, we identified that autophagy serves as a cytoprotective mechanism during Nectin-4-MMAE treatment and proposed a strategy to enhance the antitumor effects of Nectin-4-MMAE in bladder cancer. Nectin-4-MMAE rapidly internalized into bladder cancer cells in 30 minutes and released MMAE, inducing the onset of caspase-mediated apoptosis and leading to the inhibition of tumor cell growth. Transcriptomics showed significant alterations in autophagy-associated genes in bladder cancer cells treated with Nectin-4-MMAE, which suggested autophagy was activated by Nectin-4-MMAE. Furthermore, autophagy activation was characterized by ultrastructural analysis of autophagosome accumulation, immunofluorescence of autophagic flux, and immunoblotting autophagy marker proteins SQSTM1 and LC3 I/II. Importantly, inhibiting autophagy by LY294002 and chloroquine significantly enhances the cytotoxicity effects of Nectin-4-MMAE in bladder cancer cells. Additionally, we detected the participation of the AKT/mTOR signaling cascade in the induction of autophagy by Nectin-4-MMAE. The combination of Nectin-4-MMAE and an autophagy inhibitor demonstrated enhanced antitumor effects in the HT1376 xenograft tumor model. After receiving a single dose of Nectin-4-MMAE, the group that received the combination treatment showed a significant decrease in tumor size compared to the group that received only one type of treatment. Notably, one mouse in the combination treatment group achieved complete remission of the tumor. The combination group exhibited a notable rise in apoptosis and necrosis, as indicated by H&E staining and immunohistochemistry (cleaved caspase-3, ki67). These findings demonstrated the cytoprotective role of autophagy during Nectin-4-MMAE treatment and highlighted the potential of combining Nectin-4-MMAE with autophagy inhibitors for bladder cancer treatment.


Asunto(s)
Autofagia , Moléculas de Adhesión Celular , Morfolinas , Nectinas , Neoplasias de la Vejiga Urinaria , Autofagia/efectos de los fármacos , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Neoplasias de la Vejiga Urinaria/patología , Neoplasias de la Vejiga Urinaria/metabolismo , Neoplasias de la Vejiga Urinaria/genética , Humanos , Animales , Línea Celular Tumoral , Moléculas de Adhesión Celular/metabolismo , Moléculas de Adhesión Celular/genética , Ratones , Morfolinas/farmacología , Morfolinas/uso terapéutico , Ensayos Antitumor por Modelo de Xenoinjerto , Oligopéptidos/farmacología , Apoptosis/efectos de los fármacos , Ratones Desnudos , Cromonas/farmacología , Cloroquina/farmacología , Cloroquina/uso terapéutico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Proliferación Celular/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo , Ratones Endogámicos BALB C , Femenino , Proteínas Proto-Oncogénicas c-akt/metabolismo
2.
Cancer Immunol Immunother ; 73(4): 75, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38532108

RESUMEN

BACKGROUND: CD47, serving as an intrinsic immune checkpoint, has demonstrated efficacy as an anti-tumor target in hematologic malignancies. Nevertheless, the clinical relevance of CD47 in gastric cancer and its potential as a therapeutic target remains unclear. METHODS: The expression of CD47 in clinical gastric cancer tissues was assessed using immunohistochemistry and Western blot. Patient-derived cells were obtained from gastric cancer tissues and co-cultured with macrophages derived from human peripheral blood mononuclear cells. Flow cytometry analyses were employed to evaluate the rate of phagocytosis. Humanized patient-derived xenografts (Hu-PDXs) models were established to assess the efficacy of anti-CD47 immunotherapy or the combination of anti-CD47 and anti-VEGF therapy in treating gastric cancer. The infiltrated immune cells in the xenograft were analyzed by immunohistochemistry. RESULTS: In this study, we have substantiated the high expression of CD47 in gastric cancer tissues, establishing a strong association with unfavorable prognosis. Through the utilization of SIRPα-Fc to target CD47, we have effectively enhanced macrophage phagocytosis of PDCs in vitro and impeded the growth of Hu-PDXs. It is noteworthy that anti-CD47 immunotherapy has been observed to sustain tumor angiogenic vasculature, with a positive correlation between the expression of VEGF and CD47 in gastric cancer. Furthermore, the successful implementation of anti-angiogenic treatment has further augmented the anti-tumor efficacy of anti-CD47 therapy. In addition, the potent suppression of tumor growth, prevention of cancer recurrence after surgery, and significant prolongation of overall survival in Hu-PDX models can be achieved through the simultaneous targeting of CD47 and VEGF using the bispecific fusion protein SIRPα-VEGFR1 or by combining the two single-targeted agents. CONCLUSIONS: Our preclinical studies collectively offer substantiation that CD47 holds promise as a prospective target for gastric cancer, while also highlighting the potential of anti-angiogenic therapy to enhance tumor responsiveness to anti-CD47 immunotherapy.


Asunto(s)
Neoplasias , Neoplasias Gástricas , Animales , Humanos , Antígeno CD47 , Modelos Animales de Enfermedad , Inmunoterapia , Leucocitos Mononucleares/metabolismo , Recurrencia Local de Neoplasia , Fagocitosis , Factor A de Crecimiento Endotelial Vascular
3.
Biomedicines ; 12(1)2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38255298

RESUMEN

The human gut microbiota, comprising trillions of microorganisms residing in the gastrointestinal tract, has emerged as a pivotal player in modulating various aspects of human health and disease. Recent research has shed light on the intricate relationship between the gut microbiota and pharmaceuticals, uncovering profound implications for drug metabolism, efficacy, and safety. This review depicted the landscape of molecular mechanisms and clinical implications of dynamic human gut Microbiota-Drug Interactions (MDI), with an emphasis on the impact of MDI on drug responses and individual variations. This review also discussed the therapeutic potential of modulating the gut microbiota or harnessing its metabolic capabilities to optimize clinical treatments and advance personalized medicine, as well as the challenges and future directions in this emerging field.

4.
Nucleic Acids Res ; 52(D1): D1508-D1518, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-37897343

RESUMEN

Knowledge of the collective activities of individual plants together with the derived clinical effects and targeted disease associations is useful for plant-based biomedical research. To provide the information in complement to the established databases, we introduced a major update of CMAUP database, previously featured in NAR. This update includes (i) human transcriptomic changes overlapping with 1152 targets of 5765 individual plants, covering 74 diseases from 20 027 patient samples; (ii) clinical information for 185 individual plants in 691 clinical trials; (iii) drug development information for 4694 drug-producing plants with metabolites developed into approved or clinical trial drugs; (iv) plant and human disease associations (428 737 associations by target, 220 935 reversion of transcriptomic changes, 764 and 154121 associations by clinical trials of individual plants and plant ingredients); (v) the location of individual plants in the phylogenetic tree for navigating taxonomic neighbors, (vi) DNA barcodes of 3949 plants, (vii) predicted human oral bioavailability of plant ingredients by the established SwissADME and HobPre algorithm, (viii) 21-107% increase of CMAUP data over the previous version to cover 60 222 chemical ingredients, 7865 plants, 758 targets, 1399 diseases, 238 KEGG human pathways, 3013 gene ontologies and 1203 disease ontologies. CMAUP update version is freely accessible at https://bidd.group/CMAUP/index.html.


Asunto(s)
Bases de Datos Factuales , Fitoquímicos , Plantas Medicinales , Humanos , Filogenia , Plantas Medicinales/química , Plantas Medicinales/clasificación , Fitoquímicos/química , Fitoquímicos/farmacología , Fitoquímicos/uso terapéutico
5.
Cell Death Dis ; 14(11): 740, 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37963874

RESUMEN

Macrophages are the origin of most foam cells in the early stage of atherosclerotic plaques. However, the mechanism involved in the formation of macrophage-derived foam cell formation remains unclear. Here, we revealed that the hedgehog (Hh) signaling is critical in autophagy-lysosome pathway regulation and macrophage-derived foam cell formation. Inhibition of Hh signaling by vismodegib ameliorated lipid deposition and oxidative stress level in atherosclerotic plaques in high-fat diet-fed apoE-/- mice. For mechanistic study, how the Hh signaling modulate the process of foam cell formation were accessed afterward. Unexpectedly, we found that suppression of Hh signaling in apoE-/- mice had no significant impact on circulating cholesterol levels, indicating that Hh pathway modulate the procession of atherosclerotic plaque not through a traditional lipid-lowing mechanism. Instead, vismodegib was found to accelerate autophagosomes maturation as well as cholesterol efflux in macrophage-derived foam cell and in turn improve foam cell formation, while autophagy inhibitors (LY294002 or CQ) administration significantly attenuated vismodegib-induced cholesterol efflux and reversed the effect on foam cell formation. Therefore, our result demonstrated that inhibition of the Hh signaling pathway increases cholesterol efflux and ameliorates macrophage-derived foam cell formation by promoting autophagy in vitro. Our data thus suggested a novel therapeutic target of atherosclerosis and indicated the potential of vismodegib to treat atherosclerosis.


Asunto(s)
Anilidas , Aterosclerosis , Placa Aterosclerótica , Piridinas , Animales , Ratones , Células Espumosas/metabolismo , Placa Aterosclerótica/tratamiento farmacológico , Placa Aterosclerótica/metabolismo , Proteínas Hedgehog/metabolismo , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/metabolismo , Transducción de Señal , Colesterol/metabolismo , Lípidos/farmacología , Autofagia , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo
6.
Biomaterials ; 303: 122395, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37988899

RESUMEN

Triple-negative breast cancer (TNBC) causes great suffering to patients because of its heterogeneity, poor prognosis, and chemotherapy resistance. Ferroptosis is characterized by iron-dependent oxidative damage by accumulating intracellular lipid peroxides to lethal levels, and plays a vital role in the treatment of TNBC based on its intrinsic characteristics. To identify the relationship between chemotherapy resistance and ferroptosis in TNBC, we analyzed the single cell RNA-sequencing public dataset of GSE205551. It was found that the expression of Gpx4 in DOX-resistant TNBC cells was significantly higher than that in DOX-sensitive TNBC cells. Based on this finding, we hypothesize that inducing ferroptosis by inhibiting the expression of Gpx4 can reduce the resistance of TNBC to DOX and enhance the therapeutic effect of chemotherapy on TNBC. Herein, dihydroartemisinin (DHA)-loaded polyglutamic acid-stabilized Fe3O4 magnetic nanoparticles (Fe3O4-PGA-DHA) was combined with DOX-loaded polyaspartic acid-stabilized Fe3O4 magnetic nanoparticles (Fe3O4-PASP-DOX) for ferroptosis-enhanced chemotherapy of TNBC. Compared with Fe3O4-PASP-DOX, Fe3O4-PGA-DHA + Fe3O4-PASP-DOX demonstrated significantly stronger cytotoxicity against different TNBC cell lines and achieved significantly more intracellular accumulation of reactive oxygen species and lipid peroxides. Furthermore, transcriptomic analyses demonstrated that Fe3O4-PASP-DOX-induced apoptosis could be enhanced by Fe3O4-PGA-DHA-induced ferroptosis and Fe3O4-PGA-DHA + Fe3O4-PASP-DOX might trigger ferroptosis in MDA-MB-231 cells by inhibiting the PI3K/AKT/mTOR/GPX4 pathway. Fe3O4-PGA-DHA + Fe3O4-PASP-DOX showed superior anti-tumor efficacy on MDA-MB-231 tumor-bearing mice, providing great potential for improving the therapeutic effect of TNBC.


Asunto(s)
Ferroptosis , Nanopartículas , Neoplasias de la Mama Triple Negativas , Humanos , Ratones , Animales , Neoplasias de la Mama Triple Negativas/patología , Línea Celular Tumoral , Peróxidos Lipídicos/uso terapéutico , Fosfatidilinositol 3-Quinasas , Fenómenos Magnéticos
7.
J Nanobiotechnology ; 21(1): 410, 2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-37932752

RESUMEN

BACKGROUND: Pancreatic cancer is a highly aggressive malignancy with limited treatment options and a poor prognosis. Trophoblast cell surface antigen 2 (TROP2), a cell surface antigen overexpressed in the tumors of more than half of pancreatic cancer patients, has been identified as a potential target for antibody-drug conjugates (ADCs). Almost all reported TROP2-targeted ADCs are of the IgG type and have been poorly studied in pancreatic cancer. Here, we aimed to develop a novel nanobody-drug conjugate (NDC) targeting TROP2 for the treatment of pancreatic cancer. RESULTS: In this study, we developed a novel TROP2-targeted NDC, HuNbTROP2-HSA-MMAE, for the treatment of TROP2-positive pancreatic cancer. HuNbTROP2-HSA-MMAE is characterized by the use of nanobodies against TROP2 and human serum albumin (HSA) and has a drug-antibody ratio of 1. HuNbTROP2-HSA-MMAE exhibited specific binding to TROP2 and was internalized into tumor cells with high endocytosis efficiency within 5 h, followed by intracellular translocation to lysosomes and release of MMAE to induce cell apoptosis in TROP2-positive pancreatic cancer cells through the caspase-3/9 pathway. In a xenograft model of pancreatic cancer, doses of 0.2 mg/kg and 1 mg/kg HuNbTROP2-HSA-MMAE demonstrated significant antitumor effects, and a dose of 5 mg/kg even eradicated the tumor. CONCLUSION: HuNbTROP2-HSA-MMAE has desirable affinity, internalization efficiency and antitumor activity. It holds significant promise as a potential therapeutic option for the treatment of TROP2-positive pancreatic cancer.


Asunto(s)
Inmunoconjugados , Neoplasias Pancreáticas , Humanos , Antígenos de Superficie , Línea Celular Tumoral , Inmunoconjugados/química , Neoplasias Pancreáticas/patología , Ensayos Antitumor por Modelo de Xenoinjerto , Animales , Neoplasias Pancreáticas
11.
Int J Mol Sci ; 24(14)2023 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-37510993

RESUMEN

Immunotherapies including adaptive immune checkpoint inhibitors (ICIs) and chimeric antigen receptor (CAR) T cells, have developed the treatment of cancer in clinic, and most of them focus on activating T cell immunity. Although these strategies have obtained unprecedented clinical responses, only limited subsets of cancer patients could receive long-term benefits, highlighting the demand for identifying novel targets for the new era of tumor immunotherapy. Innate immunity has been demonstrated to play a determinative role in the tumor microenvironment (TME) and influence the clinical outcomes of tumor patients. A thorough comprehension of the innate immune cells that infiltrate tumors would allow for the development of new therapeutics. In this review, we outline the role and mechanism of innate immunity in TME. Moreover, we discuss innate immunity-based cancer immunotherapy in basic and clinical studies. Finally, we summarize the challenges in sufficiently motivating innate immune responses and the corresponding strategies and measures to improve anti-tumor efficacy. This review could aid the comprehension of innate immunity and inspire the creation of brand-new immunotherapies for the treatment of cancer.


Asunto(s)
Neoplasias , Humanos , Neoplasias/patología , Inmunidad Innata , Inmunoterapia , Linfocitos T , Biología , Microambiente Tumoral
12.
Biomedicines ; 11(4)2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37189778

RESUMEN

Secondary immune damage to the intestinal mucosa due to an influenza virus infection has gained the attention of investigators. The protection of the intestinal barrier is an effective means of improving the survival rate in cases of severe pneumonia. We developed a fusion protein, Vunakizumab-IL22(vmab-IL22), by combining an anti-IL17A antibody with IL22. Our previous study showed that Vunakizumab-IL22 repairs the pulmonary epithelial barrier in influenza virus-infected mice. In this study, we investigated the protective effects against enteritis given its anti-inflammatory and tissue repair functions. The number of goblet cells and the expression of zonula occludens protein 1(ZO-1), Mucin-2, Ki67 and IL-22R were determined by immunohistochemistry (IHC) and quantitative RT-PCR in influenza A virus (H1N1)-infected mice. The expression of NOD-like receptor pyrin domain containing 3 (NLRP3) and toll- like-receptor-4 (TLR4) was assayed by IHC in the lungs and intestine in HIN1 virus-induced mice to evaluate the whole efficacy of the protective effects on lungs and intestines. Consequently, Cytochrome C, phosphorylation of nuclear factor NF-kappaB (p-NF-κB), IL-1ß, NLRP3 and Caspase 3 were assayed by Western blotting in dextran sulfate sodium salt (DSS)-treated mice. Treatment with Vunakizumab-IL22 improved the shortened colon length, macroscopic and microscopic morphology of the small intestine (p < 0.001) significantly, and strengthened the tight junction proteins, which was accompanied with the upregulated expression of IL22R. Meanwhile, Vunakizumab-mIL22 inhibited the expression of inflammation-related protein in a mouse model of enteritis induced by H1N1 and DSS. These findings provide new evidence for the treatment strategy for severe viral pneumonia involved in gut barrier protection. The results suggest that Vunakizumab-IL22 is a promising biopharmaceutical drug and is a candidate for the treatment of direct and indirect intestinal injuries, including those induced by the influenza virus and DSS.

13.
Front Pharmacol ; 14: 1184703, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37251333

RESUMEN

Interleukin-15 (IL-15) is a cytokine that belongs to the interleukin-2 (IL-2) family and is essential for the development, proliferation, and activation of immune cells, including natural killer (NK) cells, T cells and B cells. Recent studies have revealed that interleukin-15 also plays a critical role in cancer immunotherapy. Interleukin-15 agonist molecules have shown that interleukin-15 agonists are effective in inhibiting tumor growth and preventing metastasis, and some are undergoing clinical trials. In this review, we will summarize the recent progress in interleukin-15 research over the past 5 years, highlighting its potential applications in cancer immunotherapy and the progress of interleukin-15 agonist development.

14.
Eng Life Sci ; 23(3): e2200060, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36874608

RESUMEN

Multiple control strategies, including a downstream purification process with well-controlled parameters and a comprehensive release or characterization for intermediates or drug substances, were implemented to mitigate the potential risk of host cell proteins (HCPs) in one concentrated fed-batch (CFB) mode manufactured product. A host cell process specific enzyme-linked immunosorbent assay (ELISA) method was developed for the quantitation of HCPs. The method was fully validated and showed good performance including high antibody coverage. This was confirmed by 2D Gel-Western Blot analysis. Furthermore, a LC-MS/MS method with non-denaturing digestion and a long gradient chromatographic separation coupled with data dependent acquisition (DDA) on a Thermo/QE-HF-X mass spectrometer was developed as an orthogonal method to help identify the specific types of HCPs in this CFB product. Because of the high sensitivity, selectivity and adaptability of the new developed LC-MS/MS method, significantly more species of HCP contaminants were able to be identified. Even though high levels of HCPs were observed in the harvest bulk of this CFB product, the development of multiple processes and analytical control strategies may greatly mitigate potential risks and reduce HCPs contaminants to a very low level. No high-risk HCP was identified and the total amount of HCPs was very low in the CFB final product.

15.
Appl Microbiol Biotechnol ; 107(7-8): 2561-2576, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36843198

RESUMEN

Diabetic nephropathy (DN), the principal pathogeny of end-stage renal disease (ESRD), is related to metabolic disorders, chronic inflammation, and oxidative stress. It was reported that high expression of interleukin-17A (IL-17A) was intimately related to the progression of DN, and targeting IL-17A exhibited regulating effects on inflammation and autoimmunity but had only limited impact on the oxidative stress damage in DN. Recent studies showed that interleukin-22 (IL-22) could inhibit mitochondrial damage and inflammatory response. Thus, the cytokine IL-22 was first fused to anti-IL-17A antibody for endowing the antibody with the anti-hyperglycemia and anti-inflammation activity. Our study demonstrated that the fusion molecule, anti-IL17A/IL22 fusion protein, could not only lead to the increase of M1 macrophages and the decrease of M2 macrophages, further improving the immune microenvironment, but also prevent the loss of mitochondrial membrane potential by reducing the production of ROS in murine DN model. In addition, the fusion protein could block TRAF6/NF-κB and AKT/ROS/TXNIP signaling pathways, further synergistically restraining the production of NLRP3, thus suppressing the inflammatory response and playing beneficial effect on slowing down the progression of DN. In conclusion, our findings demonstrated that the bifunctional IL-17A antibody and IL-22 fusion protein were of great benefit to DN, which highlighted a potential therapeutic strategy. KEY POINTS: • Anti-IL17A/IL22 fusion protein could improve the immune microenvironment and reduce the production of ROS. • Anti-IL17A/IL22 fusion protein could block TRAF6/NF-κB and AKT/ROS/TXNIP signaling pathways and then restrain the activation of NLRP3.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Ratones , Animales , Nefropatías Diabéticas/prevención & control , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , FN-kappa B/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Factor 6 Asociado a Receptor de TNF/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Inflamación/patología
16.
Immunotherapy ; 15(3): 175-187, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36727256

RESUMEN

Background: Only a subset of B-cell lymphoma (BCL) patients can benefit from immune checkpoint inhibitors targeting PD-1/PD-L1. Materials & methods: In the A20 model, SIRPα-Fc and anti-PD-L1 were employed to target CD47 and PD-L1 simultaneously. Flow cytometry, immunofluorescence and quantitative polymerase chain reaction were used to unravel the potential mechanisms. Results: Simultaneously targeting CD47 and PD-L1 activated CD8+ T cells with an increased release of effector molecules. Furthermore, infiltration of F4/80+iNOS+ M1 macrophages was enhanced by the dual therapy. Conclusion: Anti-CD47 therapy could sensitize BCL tumors to anti-PD-L1 therapy in a CD8+ T-cell- and M1-macrophage-dependent manner by promoting cytotoxic lymphocyte infiltration, which may provide a potential strategy for BCL treatment by simultaneously targeting CD47 and PD-L1.


Immune checkpoint inhibitors targeting PD-1/PD-L1 have become effective agents for cancer treatment. However, only a minority of patients benefit from this treatment in the clinic because of the limited response rate. Targeting CD47/SIRPα restores macrophage function and improves the response of antitumor immunity. Here, combination immunotherapy targeting CD47/SIRPα and PD-1/PD-L1 was investigated to increase the response rate and antitumor effect of PD-L1 monotherapy in B-cell lymphoma (BCL). This study broadens the application of the combination therapy and provided a promising strategy for B-cell lymphoma treatment by simultaneous targeting of PD-1/PD-L1 and CD47/SIRPα axis.


Asunto(s)
Linfoma de Células B , Neoplasias , Humanos , Antígeno CD47 , Linfocitos T CD8-positivos , Inmunoterapia , Linfoma de Células B/tratamiento farmacológico , Macrófagos , Antígeno B7-H1/metabolismo
17.
Nucleic Acids Res ; 51(D1): D621-D628, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-36624664

RESUMEN

Quantitative activity and species source data of natural products (NPs) are important for drug discovery, medicinal plant research, and microbial investigations. Activity values of NPs against specific targets are useful for discovering targeted therapeutic agents and investigating the mechanism of medicinal plants. Composition/concentration values of NPs in individual species facilitate the assessments and investigations of the therapeutic quality of herbs and phenotypes of microbes. Here, we describe an update of the NPASS natural product activity and species source database previously featured in NAR. This update includes: (i) new data of ∼95 000 records of the composition/concentration values of ∼1 490 NPs/NP clusters in ∼390 species, (ii) extended data of activity values of ∼43 200 NPs against ∼7 700 targets (∼40% and ∼32% increase, respectively), (iii) extended data of ∼31 600 species sources of ∼94 400 NPs (∼26% and ∼32% increase, respectively), (iv) new species types of ∼440 co-cultured microbes and ∼420 engineered microbes, (v) new data of ∼66 600 NPs without experimental activity values but with estimated activity profiles from the established chemical similarity tool Chemical Checker, (vi) new data of the computed drug-likeness properties and the absorption, distribution, metabolism, excretion and toxicity (ADMET) properties for all NPs. NPASS update version is freely accessible at http://bidd.group/NPASS.


Asunto(s)
Productos Biológicos , Investigación Biomédica , Bases de Datos Factuales , Descubrimiento de Drogas , Preparaciones Farmacéuticas/aislamiento & purificación
18.
Cell Death Discov ; 9(1): 8, 2023 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-36646672

RESUMEN

The pathogenesis of diabetic kidney disease (DKD) is complicated. Current clinical treatments fail to achieve satisfactory efficacy in the prevention of DKD progression, it urgently needs novel and effective treatment for DKD. In this study, we firstly demonstrated that renal lipid metabolism abnormality and inflammation significantly changed in DKD conditions by mining public transcriptomic data of DKD patient samples. KEGG analysis further exhibited the critical role of vascular endothelial growth factor B (VEGF-B) and interleukin 17A (IL-17A) signal pathways in DKD progression, indicating that VEGF-B and IL-17A might be the promising targets for DKD treatment. Then the potential of a novel combination therapy, anti-VEGF-B plus anti-IL-17A antibody, was evaluated for DKD treatment. Our results demonstrated that simultaneous blockade of VEGF-B and IL-17A signaling with their neutralizing antibodies alleviated renal damage and ameliorated renal function. The therapeutic effectiveness was not only related to the reduced lipid deposition especially the neutral lipids in kidney but also associated with the decreased inflammation response. Moreover, the therapy alleviated renal fibrosis by reducing collagen deposition and the expression of fibronectin and α-SMA in kidney tissues. RNA-seq analysis indicated that differential expression genes (DEGs) in db/db mice were significantly clustered into lipid metabolism, inflammation, fibrosis and DKD pathology-related pathways, and 181 of those DEGs were significantly reversed by the combinatory treatment, suggesting the underlying mechanism of administration of anti-VEGF-B and anti-IL-17A antibodies in DKD treatment. Taken together, this study identified that renal lipid metabolism abnormality and inflammation were critically involved in the progression of DKD, and simultaneous blockade of VEGF-B and IL-17A signaling represents a potential DKD therapeutic strategy.

19.
J Pharmacol Toxicol Methods ; 119: 107210, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36028046

RESUMEN

Immunogenicity has been a major concern in the safety evaluation of therapeutic proteins. The assessment of the unwanted immunogenicity of the therapeutic proteins performed in animals prior to clinical trials has been a regulatory requirement. In preclinical studies of therapeutic proteins, cynomolgus monkeys are usually the most relevant animal species. ZV0203, a recombinant humanized anti-human epidermal growth factor receptor 2 monoclonal antibody covalently bound to a cytotoxic drug (Duo-5), possesses a novel format of antibody drug conjugates. In this study, we reported the development, validation, and application of a bridging enzyme-linked immunosorbent assay for the detection of antibodies against ZV0203 in cynomolgus monkey serum. Drug interference at low positive control (18.0 ng/mL) and high positive control (130 ng/mL) of anti-ZV0203 antibodies was not observed when ZV0203 concentration is below 1.74 µg/mL and 1.49 µg/mL, respectively. In addition, no interference was found from mouse IgG1, but interference was observed with human IgG1. No effect of hemolysis was found on the analysis results of the testing samples present in 100% pooled rabbit serum containing 2% (V/V) erythrocyte hemolysates. Besides, spiked anti-ZV0203 antibody in rabbit serum was stable after 5 freeze/thaw cycles. The results showed that the method is suitable for the detection of anti-ZV0203 antibodies in cynomolgus monkey serum. The assay was also successfully applied in the repeated dose study of ZV0203.


Asunto(s)
Anticuerpos Monoclonales , Suero , Ratones , Animales , Conejos , Macaca fascicularis , Ensayo de Inmunoadsorción Enzimática/métodos , Anticuerpos Monoclonales/uso terapéutico , Inmunoglobulina G
20.
Phytother Res ; 37(2): 592-610, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36180975

RESUMEN

Sorafenib (SF), a multi-kinase inhibitor, is the first FDA-approved systemic chemotherapy drug for advanced hepatocellular carcinoma (HCC). However, its clinical application is limited by severe toxicity and side effects associated with high applied doses. Sophora alopecuroides L. is traditionally used as Chinese herbal medicine for treating gastrointestinal diseases, bacillary dysentery, viral hepatitis, and other diseases, and exerts an important role in anti-tumor. Hence, we investigated the synergistic actions of seventeen flavonoids from this herb combined with SF against HCC cell lines and their primary mechanism. In the experiment, most compounds were found to prominently enhance the inhibitory effects of SF on HCC cells than their alone treatment. Among them, three compounds leachianone A (1), sophoraflavanone G (3), and trifolirhizin (17) exhibited significantly synergistic anticancer activities against MHCC97H cells at low concentration with IC50 of SF reduced by 5.8-fold, 3.6-fold, and 3.5-fold corresponding their CI values of 0.49, 0.66, and 0.46 respectively. Importantly, compounds 3 or 17 combined with SF could synergistically induce MHCC97H cells apoptosis via the endogenously mitochondrial-mediated apoptotic pathway, involving higher Bax/Bcl-2 expressions with the activation of caspase-9 and -3, and arrest the cell cycle in G1 phases. Strikingly, this synergistic effect was also closely related to the co-suppression of ERK and AKT signaling pathways. Furthermore, compound 3 significantly enhanced the suppression of SF on tumor growth in the HepG2 xenograft model, with a 79.3% inhibition ratio at high concentration, without systemic toxicity, compared to either agent alone. These results demonstrate that the combination treatment of flavonoid 3 and SF at low doses exert synergistic anticancer effects on HCC cells in vitro and in vivo.


Asunto(s)
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Sophora , Humanos , Sorafenib/farmacología , Sorafenib/uso terapéutico , Carcinoma Hepatocelular/patología , Flavonoides/farmacología , Flavonoides/uso terapéutico , Neoplasias Hepáticas/patología , Línea Celular Tumoral , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Apoptosis , Proliferación Celular , Compuestos de Fenilurea/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA