Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 608
Filtrar
1.
Anal Chim Acta ; 1328: 343182, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39266198

RESUMEN

BACKGROUND: Chemiluminescence (CL) bioassay is one of the most advanced and used detection method in clinical diagnosis and biomedical research because of the advantages of low background, easy operation, and wide-field imaging without a light source or microscope. The luminol/hydrogen peroxide/horseradish peroxidase (luminol/H2O2/HRP) system is the most popular CL system, but its application in high-throughput imaging detection is challenged due to its low luminescence efficiency and flash-type emission which is difficult in ensuring the reproducibility and consistency of detection results. RESULTS: We reported a glow-type CL system of luminol@CD/H2O2/HRP by using a supramolecular enhancer of cyclodextrin (CD). This luminol@CD/H2O2/HRP system exhibited a luminescence lifetime of 41 min for sensitive and accurate imaging analysis. The long-lasting CL emission was attributed to the formation of a 1:1 host-guest complex between luminol and CD, which could stabilize the emitter and effectively reduce nonradiative relaxation. The formation of luminol@CD complex was determined through NMR experiments and theoretical analysis. Under optimum conditions, the luminol@CD/H2O2/HRP system showed higher sensitivity and much better precision than classical luminol/H2O2/HRP system for imaging detection of HRP. Especially, this glow-type luminol@CD/H2O2/HRP system realized CL imaging of microwell arrays on microfluidic chips. In addition, the luminol@CD/H2O2/HRP system was successfully applied for point-of-care detection of 17ß-estradiol based on a competitive mechanism of host-guest recognition. SIGNIFICANCE: An efficient CL system is crucial for obtaining reproducible and consistent results for accurate detection. Our luminol@CD/H2O2/HRP system emitted strong and persistent luminescence, resulting in reliability and efficiency at both CL macroscopic and microscopic imaging detection. We expected the luminol@CD/H2O2/HRP CL system to be applied in various detection fields.


Asunto(s)
Ciclodextrinas , Peroxidasa de Rábano Silvestre , Peróxido de Hidrógeno , Mediciones Luminiscentes , Luminol , Luminol/química , Peróxido de Hidrógeno/química , Peróxido de Hidrógeno/análisis , Ciclodextrinas/química , Mediciones Luminiscentes/métodos , Peroxidasa de Rábano Silvestre/química , Peroxidasa de Rábano Silvestre/metabolismo , Humanos , Luminiscencia , Límite de Detección
2.
Anal Chim Acta ; 1324: 343040, 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39218584

RESUMEN

BACKGROUND: Persistent infection with human papillomavirus (HPV) significantly contributes to the development of cervical cancer. Thus, it is urgent to develop rapid and accurate methods for HPV detection. Herein, we present an ultrasensitive CRISPR/Cas12a-based electrochemiluminescent (ECL) imaging technique for the detection of HPV-18 DNA. RESULT: The ECL DNA sensor array is constructed by applying black hole quencher (BHQ) and polymer dots (Pdots) co-labeled hairpin DNA (hpDNA) onto a gold-coated indium tin oxide slide (Au-ITO). The ECL imaging method involves an incubation process of target HPV-18 with a mixture of crRNA and Cas12a to activate Cas12a, followed by an incubation of the active Cas12a with the ECL sensor. This interaction causes the indiscriminate cleavage of BHQ from Pdots by digesting hpDNA on the sensor surface, leading to the restoration of the ECL signal of Pdots. The ECL brightness readout demonstrates superior performance of the ECL imaging technique, with a linear detection range of 10 fM-500 pM and a limit-of-detection (LOD) of 5.3 fM. SIGNIFICANCE: The Cas12a-based ECL imaging approach offers high sensitivity and a broad detection range, making it highly promising for nucleic acid detection applications.


Asunto(s)
Sistemas CRISPR-Cas , Técnicas Electroquímicas , Mediciones Luminiscentes , Técnicas Electroquímicas/métodos , Mediciones Luminiscentes/métodos , Sistemas CRISPR-Cas/genética , Humanos , Técnicas Biosensibles/métodos , ADN Viral/análisis , ADN Viral/genética , Papillomavirus Humano 18/genética , Límite de Detección , Oro/química , Proteínas Asociadas a CRISPR , Proteínas Bacterianas , Endodesoxirribonucleasas
3.
Chemistry ; : e202402566, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39145432

RESUMEN

As a post transcriptional regulator of gene expression, miRNA is closely related to many major human diseases, especially cancer. Therefore, its precise detection is very important for disease diagnosis and treatment. With the advancement of fluorescent dye and imaging technology, the focus has shifted from in vitro microRNAs (miRNA) detection to in vivo miRNA imaging. This concept review summarizes signal amplification strategies including DNAzyme catalytic reaction, hybrid chain reaction (HCR), catalytic hairpin assembly (CHA) to enhance detection signal of lowly expressed miRNAs; external stimuli of ultraviolet (UV) light or near-infrared region (NIR) light, and internal stimuli such as adenosine triphosphate (ATP), glutathione (GSH), protease and cell membrane protein to prevent nonspecific activation for the avoidance of false positive signal; and the development of fluorescent probes with emission in NIR for in vivo miRNA imaging; as well as rare earth nanoparticle based the second near-infrared window (NIR-II) nanoprobes with excellent tissue penetration and depth for in vivo miRNA imaging. The concept review also indicated current challenges for in vivo miRNA imaging including the dynamic monitoring of miRNA expression change and simultaneous in vivo imaging of multiple miRNAs.

4.
Anal Chem ; 96(33): 13371-13378, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39116285

RESUMEN

Biomimetic enzymes have emerged as ideal alternatives to natural enzymes, and there is considerable interest in designing biomimetic enzymes with enhanced catalytic performance to address the low activity of the current biomimetic enzymes. In this study, we proposed a meaningful strategy for constructing an efficient peroxidase-mimicking catalyst, called HhG-MOF, by anchoring histidine (H) and dual hemin-G-quadruplex DNAzyme (double hemin covalently linked to 3' and 5' terminals of G-quadruplex DNA, short as hG) to a mesoporous metal-organic framework (MOF). This design aims to mimic the microenvironment of natural peroxidase. Remarkably, taking a terbium MOF as a typical model, the initial rate of the resulting catalyst was found to be 21.1 and 4.3 times higher than that of Hh-MOF and hG-MOF, respectively. The exceptional catalytic properties of HhG-MOF can be attributed to its strong affinity for substrates. Based on the inhibitory effect of thiocholine (TCh) produced by the reaction between acetylcholinesterase (AChE) and acetylthiocholine, a facile, cost-effective, and sensitive colorimetric method was designed based on HhG-MOF for the measurement of AChE, a marker of several neurological diseases, and its inhibitor. This allowed a linear response in the 0.002 to 1 U L-1 range, with a detection limit of 0.001 U L-1. Furthermore, the prepared sensor demonstrated great selectivity and performed well in real blood samples, suggesting that it holds promise for applications in the clinical field.


Asunto(s)
Técnicas Biosensibles , ADN Catalítico , G-Cuádruplex , Hemina , Histidina , Estructuras Metalorgánicas , Hemina/química , Estructuras Metalorgánicas/química , Técnicas Biosensibles/métodos , Histidina/química , ADN Catalítico/química , ADN Catalítico/metabolismo , Colorimetría , Humanos , Catálisis , Materiales Biomiméticos/química
5.
Nanomaterials (Basel) ; 14(16)2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39195364

RESUMEN

Rare earth-doped nanoparticles (RENPs) are promising biomaterials with substantial potential in biomedical applications. Their multilayered core-shell structure design allows for more diverse uses, such as orthogonal excitation. However, the typical synthesis strategies-one-pot successive layer-by-layer (LBL) method and seed-assisted (SA) method-for creating multilayered RENPs show notable differences in spectral performance. To clarify this issue, a thorough comparative analysis of the elemental distribution and spectral characteristics of RENPs synthesized by these two strategies was conducted. The SA strategy, which avoids the partial mixing stage of shell and core precursors inherent in the LBL strategy, produces RENPs with a distinct interface in elemental distribution. This unique elemental distribution reduces unnecessary energy loss via energy transfer between heterogeneous elements in different shell layers. Consequently, the synthesis method choice can effectively modulate the spectral properties of RENPs. This discovery has been applied to the design of orthogonal RENP biomedical probes with appropriate dimensions, where the SA strategy introduces a refined inert interface to prevent unnecessary energy loss. Notably, this strategy has exhibited a 4.3-fold enhancement in NIR-II in vivo imaging and a 2.1-fold increase in reactive oxygen species (ROS)-related photodynamic therapy (PDT) orthogonal applications.

6.
Anal Chem ; 96(36): 14590-14597, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39183481

RESUMEN

Hemin/G-quadruplex (hG4) complexes are frequently used as artificial peroxidase-like enzymatic systems (termed G4 DNAzymes) in many biosensing applications, in spite of a rather low efficiency, notably in terms of detection limits. To tackle this issue, we report herein a strategy in which hemin is chemically modified with the amino acids found in the active site of parent horseradish peroxidase (HRP), with the aim of recreating an environment conducive to high catalytic activity. When hemin is conjugated with a single arginine, it associates with G4 to create an arginine-hemin/G4 (R-hG4) DNAzyme that exhibits improved catalytic performances, characterized by kinetic analysis and DFT calculations. The practical relevance of this system was demonstrated with the implementation of biosensing assays enabling the chemiluminescent detection of G4-containing DNA and colorimetry detection of the flap endonuclease 1 (FEN1) enzyme with a high efficiency and sensitivity. Our results thus provide a guide for future enzyme engineering campaigns to create ever more efficient peroxidase-mimicking DNA-based systems.


Asunto(s)
Arginina , ADN Catalítico , G-Cuádruplex , Hemina , Hemina/química , ADN Catalítico/química , ADN Catalítico/metabolismo , Arginina/química , Arginina/metabolismo , Técnicas Biosensibles/métodos , Peroxidasa/química , Peroxidasa/metabolismo , Peroxidasa de Rábano Silvestre/química , Peroxidasa de Rábano Silvestre/metabolismo , Límite de Detección , Colorimetría , Teoría Funcional de la Densidad
7.
Small ; : e2405712, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39162109

RESUMEN

The exaltation of light-harvesting efficiency and the inhibition of fast charge recombination are pivotal to the improvement of photoelectrochemical (PEC) performance. Herein, a direct Z-scheme heterojunction is designed of Cu2S/CdIn2S4 by in situ growth of CdIn2S4 nanosheets on the surface of hollow CuS cubes and then annealing at 400 °C. The constructed Z-scheme heterojunction is demonstrated with electron paramagnetic resonance and redox couple (p-nitrophenol/p-aminophenol) measurements. Under illumination, it shows the photocurrent 6 times larger than that of hollow Cu2S cubes, and affords outstanding PEC performance over the known Cu2S and CdIn2S4-based photocatalysts. X-ray photoelectron spectroscopy and density functional theory results demonstrate a strong internal electric field formed in Cu2S/CdIn2S4 Z-scheme heterojunction, which accelerates the Z-scheme charge migration, thereby promoting electron-hole separation and enhancing their utilization efficiency. Moreover, the hollow structure of Cu2S is conducive to shortening the charge transport distance and improving light-harvesting capability. In proof-of-concept PEC application, a PEC detection method for miRNA-141 based on the sensitivity of benzo-4-chloro-hexadienone to light absorption on Cu2S/CdIn2S4 modified electrode is developed with good selectivity and a limit of detection of 32 aM. This work provides a simple approach for designing photoactive materials with highly efficient PEC performance.

8.
ACS Appl Mater Interfaces ; 16(35): 45948-45955, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39164880

RESUMEN

In this paper, we innovatively proposed a highly uniform vesicle preparation scheme based on the intervesicle mechanical self-constraint effect of vesicle crowding. By adjusting the spacing of discrete microwell structures, we observed that during the self-assembly of phospholipid molecules in microwells to form giant unilamellar vesicles (GUVs), the scale swelling of the vesicles during the continuous growth process would lead to the crowding of vesicles in adjacent microwells, thus inducing the formation of intervesicle mechanical self-constraint effect. The results of the experiment showed that this paper obtained the optimized discretized microwell structure (micropillar side: 30 µm; pitch: 0 µm), and the corresponding lipid mass was measured and determined, yielding homogeneous giant GUVs of 37.9 ± 2.0 µm. In this paper, homogenized GUVs (∼40 µm) with different cholesterol concentrations (10, 20, and 30%) were obtained by this method, and the above vesicles were subjected to controlled electroporation experiment under external electric fields of 23, 31, and 41 kV/cm, respectively. It showed that the mechanical self-constraint effect of vesicle crowding induced by patterned microstructures during the self-assembly of phospholipid molecules significantly enhances the size homogeneity of GUVs, which would be helpful for the wide applications of GUVs in other areas such as cell-like models and controlled release of drugs.

9.
Anal Chem ; 96(27): 11044-11051, 2024 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-38937378

RESUMEN

Metal nanoclusters (NCs) as a new kind of luminophore have acquired sufficient interest, but their widespread application is restricted on account of their relatively low electrochemiluminescence (ECL) efficiency. Then, aqueous metal NCs with high ECL efficiency were strongly anticipated, especially for the ultrasensitive analysis of biomarkers. Herein, a near-infrared (NIR) ECL biosensing strategy for the test of neuron-specific enolase (NSE) was proposed by utilizing N-acetyl-l-cysteine (NAC)- and cysteamine (Cys)-stabilized gold NCs (NAC/Cys-AuNCs) as ECL emitters with the NIR ECL emission around 860 nm and a metal-organic framework/palladium nanocubes (ZIF-67/PdNCs) hybrid as the coreaction accelerator through their admirable electrocatalytic activity. The NIR emission would reduce photochemical injury to the samples and even realize nondestructive analysis with highly strong susceptibility and suitability. Furthermore, the utilization of ZIF-67/PdNCs could improve the ECL response of NAC/Cys-AuNCs by facilitating the oxidation of the coreactant triethylamine (TEA), leading to the production of a larger quantity of reducing intermediate radical TEA•+. Consequently, NAC/Cys-AuNCs with ZIF-67/PdNCs displayed 2.7 fold enhanced ECL emission compared with the single NAC/Cys-AuNCs using TEA as the coreactant. In addition, HWRGWVC (HWR), a heptapeptide, was introduced to immobilize antibodies for the specially binding Fc fragment of the antibodies, which improved the binding efficiency and sensitivity. As a result, a "signal-on" immunosensor for NSE analysis was obtained with an extensive linear range of 0.1 to 5 ng/mL and a low limit of detection (0.033 fg/mL) (S/N = 3). This study provides a wonderful method for the development of an efficient nondestructive immunoassay.


Asunto(s)
Biomarcadores , Técnicas Electroquímicas , Oro , Mediciones Luminiscentes , Nanopartículas del Metal , Estructuras Metalorgánicas , Oro/química , Estructuras Metalorgánicas/química , Nanopartículas del Metal/química , Inmunoensayo/métodos , Técnicas Electroquímicas/métodos , Biomarcadores/análisis , Cobalto/química , Humanos , Fosfopiruvato Hidratasa/análisis , Límite de Detección , Cisteamina/química , Paladio/química , Rayos Infrarrojos , Técnicas Biosensibles/métodos
10.
Adv Sci (Weinh) ; 11(32): e2402237, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38924304

RESUMEN

Nanomaterials excel in mimicking the structure and function of natural enzymes while being far more interesting in terms of structural stability, functional versatility, recyclability, and large-scale preparation. Herein, the story assembles hemin, histidine analogs, and G-quadruplex DNA in a catalytically competent supramolecular assembly referred to as assembly-activated hemin enzyme (AA-heminzyme). The catalytic properties of AA-heminzyme are investigated both in silico (by molecular docking and quantum chemical calculations) and in vitro (notably through a systematic comparison with its natural counterpart horseradish peroxidase, HRP). It is found that this artificial system is not only as efficient as HRP to oxidize various substrates (with a turnover number kcat of 115 s-1) but also more practically convenient (displaying better thermal stability, recoverability, and editability) and more economically viable, with a catalytic cost amounting to <10% of that of HRP. The strategic interest of AA-heminzyme is further demonstrated for both industrial wastewater remediation and biomarker detection (notably glutathione, for which the cost is decreased by 98% as compared to commercial kits).


Asunto(s)
Hemina , Hemina/química , Hemina/metabolismo , G-Cuádruplex , Análisis Costo-Beneficio/métodos , Simulación del Acoplamiento Molecular/métodos , Catálisis , Nanoestructuras/química , Aguas Residuales/química
11.
J Am Chem Soc ; 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38837248

RESUMEN

Electrochemiluminescence (ECL) involves charge transfer between electrochemical redox intermediates to produce an excited state for light emission. Ensuring precise control of charge transfer is essential for decoding ECL fundamentals, yet guidelines on how to achieve this for conventional emitters remain unexplored. Molecular ratchets offer a potential solution, as they enable the directional transfer of energy or chemicals while impeding the reverse movement. Herein, we designed 10 pairs of imine-based covalent organic frameworks as reticular ratchets to delicately manipulate the intrareticular charge transfer for directing ECL transduction from electric and chemical energies. Aligning the donor and acceptor (D-A) directions with the imine dipole effectively facilitates charge migration, whereas reversing the D-A direction impedes it. Notably, the ratchet effect of charge transfer directionality intensified with increasing D-A contrast, resulting in a remarkable 680-fold improvement in the ECL efficiency. Furthermore, dipole-controlled exciton binding energy, electron/hole decay kinetics, and femtosecond transient absorption spectra identified the electron transfer tendency from the N-end toward the C-end of reticular ratchets during ECL transduction. An exponential correlation between the ECL efficiency and the dipole difference was discovered. Our work provides a general approach to manipulate charge transfer and design next-generation electrochemical devices.

12.
Anal Chem ; 96(21): 8814-8821, 2024 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-38751335

RESUMEN

Highly responsive interface of semiconductor nanophotoelectrochemical materials provides a broad development prospect for the identification of low-abundance cancer marker molecules. This work innovatively proposes an efficient blank WO3/SnIn4S8 heterojunction interface formed by self-assembly on the working electrode for interface regulation and photoregulation. Different from the traditional biomolecular layered interface, a hydrogel layer containing manganese dioxide with a wide light absorption range is formed at the interface after an accurate response to external immune recognition. The formation of the hydrogel layer hinders the effective contact between the heterojunction interface and the electrolyte solution, and manganese dioxide in the hydrogel layer forms a strong competition between the light source and the substrate photoelectric material. The process effectively improves the carrier recombination efficiency at the interface, reduces the interface reaction kinetics and photoelectric conversion efficiency, and thus provides strong support for target identification. Taking advantage of the process, the resulting biosensors are being explored for sensitive detection of human epidermal growth factor receptor 2, with a limit of detection as low as 0.037 pg/mL. Also, this study contributes to the advancement of photoelectrochemical biosensing technology and opens up new avenues for the development of sensitive and accurate analytical tools in the field of bioanalysis.


Asunto(s)
Técnicas Biosensibles , Técnicas Electroquímicas , Compuestos de Manganeso , Óxidos , Receptor ErbB-2 , Humanos , Técnicas Electroquímicas/métodos , Óxidos/química , Compuestos de Manganeso/química , Receptor ErbB-2/inmunología , Receptor ErbB-2/metabolismo , Hidrogeles/química , Procesos Fotoquímicos , Límite de Detección , Electrodos , Inmunoensayo/métodos , Tungsteno/química
13.
Talanta ; 277: 126321, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38805945

RESUMEN

In this article, ferric ion-doped floral graphite carbon nitride (Fe-CN-3, energy donor) was used to construct the substrate of the immunosensor and copper oxide nanocubes (Cu2O, energy acceptor) were taken as an efficient ECL quenching probe. A sandwich quench electrochemiluminescence (ECL) immunosensor for soluble cytokeratin 19 fragment (Cyfra21-1) detection was preliminarily developed based on a novel resonant energy transfer donor-acceptor pair. Fe-CN-3, a carbon nitride that combines the advantages of metal ion doping as well as morphology modulation, is used in ECL luminophores to provide more excellent ECL performance, which makes a significant contribution to the application and development of carbon nitride in the field of ECL biosensors. The regular shape, high specific surface area and excellent biocompatibility of the quencher Cu2O nanocubes facilitate the labeling of secondary antibodies and the construction of sensors. Meanwhile, as an energy acceptor, the UV absorption spectrum of Cu2O can overlap efficiently with the energy donor's ECL emission spectrum, making it prone to the occurrence of ECL-RET and thus obtaining an excellent quenching effect. These merits of the donor-acceptor pair enable the sensor to have a wide detection range of 0.00005-100 ng/mL and a low detection limit of 17.4 fg/mL (S/N = 3), which provides a new approach and theoretical basis for the clinical detection of lung cancer.


Asunto(s)
Antígenos de Neoplasias , Técnicas Biosensibles , Cobre , Técnicas Electroquímicas , Grafito , Queratina-19 , Mediciones Luminiscentes , Cobre/química , Queratina-19/análisis , Queratina-19/inmunología , Técnicas Electroquímicas/métodos , Humanos , Grafito/química , Técnicas Biosensibles/métodos , Mediciones Luminiscentes/métodos , Inmunoensayo/métodos , Antígenos de Neoplasias/análisis , Antígenos de Neoplasias/inmunología , Límite de Detección , Compuestos de Nitrógeno/química , Nitrilos/química
14.
Talanta ; 276: 126272, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38776780

RESUMEN

The development of photoelectrochemical (PEC) biosensors plays a critical role in enabling timely intervention and personalized treatment for cardiac injury. Herein, a novel approach is presented for the fabrication of highly sensitive PEC biosensor employing Bi2O3/MgIn2S4 heterojunction for the ultrasensitive detection of heart fatty acid binding protein (H-FABP). The Bi2O3/MgIn2S4 heterojunction, synthesized through in-situ growth of MgIn2S4 on Bi2O3 nanoplates, offers superior attributes including a larger specific surface area and more homogeneous distribution, leading to enhanced sensing sensitivity. The well-matched valence and conduction bands of Bi2O3 and MgIn2S4 effectively suppress the recombination of photogenerated carriers and facilitate electron transfer, resulting in a significantly improved photocurrent signal response. And the presence of the secondary antibody marker (ZnSnO3) introduces steric hindrance that hinders electron transfer between ascorbic acid and the photoelectrode, leading to a reduction in photocurrent signal. Additionally, the competition between the ZnSnO3 marker and the Bi2O3/MgIn2S4 heterojunction material for the excitation light source further diminishes the photocurrent signal response. After rigorous repeatability and selectivity tests, the PEC biosensor exhibited excellent performance, and the linear detection range of the biosensor was determined to be 0.05 pg/mL to 100 ng/mL with a remarkable detection limit of 0.029 pg/mL (S/N = 3).


Asunto(s)
Técnicas Biosensibles , Bismuto , Técnicas Electroquímicas , Técnicas Biosensibles/métodos , Bismuto/química , Técnicas Electroquímicas/métodos , Electrodos , Humanos , Procesos Fotoquímicos , Sulfuros/química , Límite de Detección , Proteínas de Unión a Ácidos Grasos/análisis , Indio/química , Compuestos de Zinc/química , Compuestos de Estaño/química
15.
Nanoscale ; 16(21): 10273-10282, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38717507

RESUMEN

Intravesical instillation is the common therapeutic strategy for bladder cancer. Besides chemo drugs, nanoparticles are used as intravesical instillation reagents, offering appealing therapeutic approaches for bladder cancer treatment. Metal oxide nanoparticle based chemodynamic therapy (CDT) converts tumor intracellular hydrogen peroxide to ROS with cancer cell-specific toxicity, which makes it a promising approach for the intravesical instillation of bladder cancer. However, the limited penetration of nanoparticle based therapeutic agents into the mucosa layer of the bladder wall poses a great challenge for the clinical application of CDT in intravesical instillation. Herein, we developed a 1064 nm NIR-II light driven hydrogel nanomotor for the CDT for bladder cancer via intravesical instillation. The hydrogel nanomotor was synthesized via microfluidics, wrapped with a lipid bilayer, and encapsulates CuO2 nanoparticles as a CDT reagent and core-shell structured Fe3O4@Cu9S8 nanoparticles as a fuel reagent with asymmetric distribution in the nanomotor (LipGel-NM). An NIR-II light irradiation of 1064 nm drives the active motion of LipGel-NMs, thus facilitating their distribution in the bladder and deep penetration into the mucosa layer of the bladder wall. After FA-mediated endocytosis in bladder cancer cells, CuO2 is released from LipGel-NMs due to the acidic intracellular environment for CDT. The NIR-II light powered active motion of LipGel-NMs effectively enhances CDT, providing a promising strategy for bladder cancer therapy.


Asunto(s)
Cobre , Hidrogeles , Neoplasias de la Vejiga Urinaria , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Neoplasias de la Vejiga Urinaria/patología , Neoplasias de la Vejiga Urinaria/metabolismo , Neoplasias de la Vejiga Urinaria/terapia , Hidrogeles/química , Hidrogeles/farmacología , Humanos , Cobre/química , Cobre/farmacología , Línea Celular Tumoral , Animales , Administración Intravesical , Ratones , Rayos Infrarrojos , Femenino
16.
Angew Chem Int Ed Engl ; 63(31): e202407109, 2024 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-38702296

RESUMEN

Obtaining information about cellular interactions is fundamental to the elucidation of physiological and pathological processes. Proximity labeling technologies have been widely used to report cellular interactions in situ; however, the reliance on addition of tag molecules typically restricts their application to regions where tags can readily diffuse, while the application in, for example, solid tissues, is susceptible. Here, we propose an "in-situ-tag-generation mechanism" and develop the GalTag technology based on galactose oxidase (GAO) for recording cellular interactions within three-dimensional biological solid regions. GAO mounted on bait cells can in situ generate bio-orthogonal aldehyde tags as interaction reporters on prey cells. Using GalTag, we monitored the dynamics of cellular interactions and assessed the targeting ability of engineered cells. In particular, we recorded, for the first time, the footprints of Bacillus Calmette-Guérin (BCG) invasion into the bladder tissue of living mice, providing a valuable perspective to elucidate the anti-tumor mechanism of BCG.


Asunto(s)
Galactosa Oxidasa , Animales , Ratones , Galactosa Oxidasa/metabolismo , Galactosa Oxidasa/química , Humanos , Comunicación Celular
17.
Anal Chim Acta ; 1310: 342703, 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38811134

RESUMEN

BACKGROUND: Photoelectrochemical (PEC) sensors have attracted much attention due to their low cost, simple instrumentation and high sensitivity. However, conventional PEC sensors require layer-by-layer modification of the photoelectrode surface, which has the disadvantages of being time-consuming and unstable. In addition, complex interfering substances in real samples may lead to false-positive or false-negative detection results. It was thought that the above drawbacks could be eliminated by the construction of a polarity inversion PEC sensor. In this work, a magnetically separated PEC sensor was constructed for the detection of Carcinoembryonic antigen (CEA). RESULTS: During the experiment, the construction of the sensor was used for sensitive detection of CEA. In the experimental process, Fe3O4@SiO2@CdS, a semiconductor material with magnetic properties, was chosen as the substrate material, and ZnO/CuO was used as the marker on the DNA2 molecule, and a split magnetic separation PEC sensor was constructed, which was used to realize the sensitive detection of CEA. Eventually, the detection range of the sensor for CEA detection is 1-10000 pg/mL, with the detection limit of 0.34 pg/mL. Additionally, the PEC sensor has the advantages of high speed, high efficiency, high sensitivity, good specificity, and high stability. The sensing platform constructed in this work can also be extended to detect other targets, which provides a new idea for PEC sensing platforms. SIGNIFICANCE: In this experiment, we developed a split PEC immunosensor based on magneto-optic nanostructure and photocurrent polarity switching strategy. Specifically, the proposed magnetic nanostructure Fe3O4@SiO2@CdS-DNA1 exhibits good paramagnetism and dispersion ability. By magnetic separation process, the PEC signals of opposite polarity can be obtained.

18.
Biosens Bioelectron ; 259: 116387, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38754194

RESUMEN

The incidence of esophageal cancer is positively associated with fumonisin contamination. It is necessary to develop methods for the rapid detection of fumonisins. In this work, a self-powered photoelectrochemical aptamer sensor based on ZnIn2S4/WO3 photoanode and Au@W-Co3O4 photocathode is proposed for the sensitive detection of fumonisin B1 (FB1). Among them, under visible light irradiation, the Z-type heterostructure of ZnIn2S4/WO3 acts as a photoanode to improve the electron transfer rate, which contributes to the enhancement of the photocathode signal and lays the foundation for a wider detection range. The Au@W-Co3O4 photocathode as a sensing interface reduces the probability of false positives (comparison of anode sensing platforms). The PEC sensor has a good working performance in the detection range (10 pg/mL-1000 ng/mL) with a detection limit of 2.7 pg/mL (S/N = 3). In addition, the sensor offers good selectivity, stability and excellent recoveries in real sample analysis. This work is expected to play a role in the field of analyzing environmental toxins.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Técnicas Electroquímicas , Fumonisinas , Límite de Detección , Fumonisinas/análisis , Fumonisinas/química , Aptámeros de Nucleótidos/química , Tungsteno/química , Electrodos , Óxidos/química , Oro/química , Humanos , Luz , Zinc/química
19.
Anal Chem ; 96(18): 7265-7273, 2024 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-38649306

RESUMEN

The unique optoelectronic and tunable luminescent characteristics of copper nanoclusters (Cu NCs) make them extremely promising as luminophores. However, the limited luminescence intensity and stability of Cu NCs have restricted their application in the field of electrochemiluminescence (ECL). Herein, a self-assembly-induced enhancement strategy was successfully employed to enhance the cathodic ECL performance of flexible ligand-stabilized Cu NCs. Specifically, Cu NCs form ordered sheetlike structures through intermolecular force. The restriction of ligand torsion in this self-assembled structure leads to a significant improvement in the ECL properties of the Cu NCs. Experimental results demonstrate that the assembled nanoscale Cu NC sheets exhibit an approximately three-fold increase in cathodic ECL emission compared to the dispersed state of Cu NCs. Furthermore, assembled nanoscale Cu NCs sheets were utilized as signal probes in conjunction with a specific short peptide derived from the catalytic structural domain of matrix metalloproteinase 14 (MMP 14) as the identification probe, thereby establishing a split-type ECL sensing platform for the quantification of NMP 14. The investigation has revealed the exceptional performance of assembled nanoscale Cu NCs sheets in ECL analysis, thus positioning them as novel and promising signal probes with significant potential in the field of sensing.


Asunto(s)
Cobre , Técnicas Electroquímicas , Mediciones Luminiscentes , Metaloproteinasa 14 de la Matriz , Nanopartículas del Metal , Cobre/química , Técnicas Electroquímicas/métodos , Nanopartículas del Metal/química , Metaloproteinasa 14 de la Matriz/metabolismo , Metaloproteinasa 14 de la Matriz/análisis , Electrodos , Humanos
20.
JACS Au ; 4(2): 384-401, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38425935

RESUMEN

Besides proteins and nucleic acids, carbohydrates are also ubiquitous building blocks of living systems. Approximately 70% of mammalian proteins are glycosylated. Glycans not only provide structural support for living systems but also act as crucial regulators of cellular functions. As a result, they are considered essential pieces of the life science puzzle. However, research on glycans has lagged far behind that on proteins and nucleic acids. The main reason is that glycans are not direct products of gene coding, and their synthesis is nontemplated. In addition, the diversity of monosaccharide species and their linkage patterns contribute to the complexity of the glycan structures, which is the molecular basis for their diverse functions. Research in glycobiology is extremely challenging, especially for the in situ elucidation of glycan structures and functions. There is an urgent need to develop highly specific glycan labeling tools and imaging methods and devise glycan editing strategies. This Perspective focuses on the challenges of in situ analysis of glycans in living systems at three spatial levels (i.e., cell, tissue, and in vivo) and highlights recent advances and directions in glycan labeling, imaging, and editing tools. We believe that examining the current development landscape and the existing bottlenecks can drive the evolution of in situ glycan analysis and intervention strategies and provide glycan-based insights for clinical diagnosis and therapeutics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...