Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Eur Biophys J ; 39(1): 111-20, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19305991

RESUMEN

The hERG K(+) channel undergoes rapid inactivation that is mediated by 'collapse' of the selectivity filter, thereby preventing ion conduction. Previous studies have suggested that the pore-helix of hERG may be up to seven residues longer than that predicted by homology with channels with known crystal structures. In the present work, we determined structural features of a peptide from the pore loop region of hERG (residues 600-642) in both sodium dodecyl sulfate (SDS) and dodecyl phosphocholine (DPC) micelles using NMR spectroscopy. A complete structure calculation was done for the peptide in DPC, and the localization of residues inside the micelles were analysed by using a water-soluble paramagnetic reagent with both DPC and SDS micelles. The pore-helix in the hERG peptide was only two-four residues longer at the N-terminus, compared with the pore helices seen in the crystal structures of other K(+) channels, rather than the seven residues suggested from previous NMR studies. The helix in the peptide spanned the same residues in both micellar environments despite a difference in the localization inside the respective micelles. To determine if the extension of the length of the helix was affected by the hydrophobic environment in the two types of micelles, we compared NMR and X-ray crystallography results from a homologous peptide from the voltage gated potassium channel, KcsA.


Asunto(s)
Canales de Potasio Éter-A-Go-Go/química , Secuencia de Aminoácidos , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Micelas , Modelos Moleculares , Datos de Secuencia Molecular , Resonancia Magnética Nuclear Biomolecular , Fosforilcolina/análogos & derivados , Fosforilcolina/química , Porosidad , Estructura Secundaria de Proteína , Dodecil Sulfato de Sodio/química
2.
J Biol Chem ; 284(2): 1000-8, 2009 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-18996846

RESUMEN

Ion flow in many voltage-gated K(+) channels (VGK), including the (human ether-a-go-go-related gene) hERG channel, is regulated by reversible collapse of the selectivity filter. hERG channels, however, exhibit low sequence homology to other VGKs, particularly in the outer pore helix (S5) domain, and we hypothesize that this contributes to the unique activation and inactivation kinetics in hERG K(+) channels that are so important for cardiac electrical activity. The S5 domain in hERG identified by NMR spectroscopy closely corresponded to the segment predicted by bioinformatics analysis of 676 members of the VGK superfamily. Mutations to approximately every third residue, from Phe(551) to Trp(563), affected steady state activation, whereas mutations to approximately every third residue on an adjacent face and spanning the entire S5 segment perturbed inactivation, suggesting that the whole span of S5 experiences a rearrangement associated with inactivation. We refined a homology model of the hERG pore domain using constraints from the mutagenesis data with residues affecting inactivation pointing in toward S6. In this model the three residues with maximum impact on activation (W563A, F559A, and F551A) face out toward the voltage sensor. In addition, the residues that when mutated to alanine, or from alanine to valine, that did not express (Ala(561), His(562), Ala(565), Trp(568), and Ile(571)), all point toward the pore helix and contribute to close hydrophobic packing in this region of the channel.


Asunto(s)
Membrana Celular/química , Membrana Celular/metabolismo , Canales de Potasio Éter-A-Go-Go/química , Canales de Potasio Éter-A-Go-Go/metabolismo , Secuencia de Aminoácidos , Canales de Potasio Éter-A-Go-Go/genética , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Mutación/genética , Resonancia Magnética Nuclear Biomolecular , Estructura Terciaria de Proteína , Alineación de Secuencia , Homología Estructural de Proteína
3.
J Biol Chem ; 282(19): 14447-53, 2007 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-17383967

RESUMEN

Glycine is an inhibitory neurotransmitter in the spinal cord and brain stem, where it acts on strychnine-sensitive glycine receptors, and is also an excitatory neurotransmitter throughout the brain and spinal cord, where it acts on the N-methyl-d-aspartate family of receptors. There are two Na(+)/Cl(-)-dependent glycine transporters, GLYT1 and GLYT2, which control extracellular glycine concentrations and these transporters show differences in substrate selectivity and blocker sensitivity. A bacterial Na(+)-dependent leucine transporter (LeuT(Aa)) has recently been crystallized and its structure determined. When the amino acid residues within the leucine binding site of LeuT(Aa) are aligned with residues of the two glycine transporters there are a number of identical residues and also some key differences. In this report, we demonstrate that the LeuT(Aa) structure represents a good working model of the Na(+)/Cl(-)-dependent neurotransmitters and that differences in substrate selectivity can be attributed to a single difference of a glycine residue in transmembrane domain 6 of GLYT1 for a serine residue at the corresponding position of GLYT2.


Asunto(s)
Proteínas de Transporte de Glicina en la Membrana Plasmática/química , Glicina/metabolismo , Fragmentos de Péptidos/metabolismo , Serina/metabolismo , Animales , Electrofisiología , Femenino , Glicina/química , Glicina/genética , Proteínas de Transporte de Glicina en la Membrana Plasmática/genética , Proteínas de Transporte de Glicina en la Membrana Plasmática/metabolismo , Humanos , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Mutación , Oocitos/citología , Oocitos/metabolismo , Fragmentos de Péptidos/genética , Homología de Secuencia de Aminoácido , Serina/química , Serina/genética , Especificidad por Sustrato , Xenopus laevis/metabolismo
4.
Eur J Pharm Sci ; 23(1): 1-11, 2004 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-15324920

RESUMEN

The regulation of glutamate and glycine concentrations within excitatory synapses plays an important role in maintaining a dynamic signalling process between neurones, but the failure to regulate the concentrations of these neurotransmitters has been implicated in the pathogenesis of various neurological disorders. In this review we shall discuss how glutamate and glycine transporters regulate synaptic concentrations of these neurotransmitters and how endogenous allosteric modulators influence transporter function. Whilst glutamate transport inhibitors are unlikely to be of therapeutic value because their potential to cause excitoxicity and cell death, a greater understanding of how endogenous compounds allosterically modulate glutamate transporters may provide alternate drug targets. On the other hand, there are some promising drugs that inhibit glycine transporters, which are being trialled as an alternate treatment for schizophrenia. We shall discuss how the activity of one such compound may be expected to influence excitatory neurotransmission.


Asunto(s)
Proteínas Portadoras/metabolismo , Neurotransmisores/metabolismo , Receptores de Glutamato/metabolismo , Sinapsis/metabolismo , Sistema de Transporte de Aminoácidos X-AG/metabolismo , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Animales , Proteínas Portadoras/química , Proteínas de Transporte de Glicina en la Membrana Plasmática , Humanos , Conformación Proteica , Receptores de Glutamato/química
5.
J Biol Chem ; 279(22): 22983-91, 2004 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-15031290

RESUMEN

In the central nervous system, glycine is a co-agonist with glutamate at the N-methyl-D-aspartate subtype of glutamate receptors and also an agonist at inhibitory, strychnine-sensitive glycine receptors. The GLYT1 subtypes of glycine transporters (GLYTs) are responsible for regulation of glycine at excitatory synapses, whereas a combination of GLYT1 and GLYT2 subtypes of glycine transporters are used at inhibitory glycinergic synapses. Zn2+ is stored in synaptic vesicles with glutamate in a number of regions of the brain and is believed to play a role in modulation of excitatory neurotransmission. In this study we have investigated the actions of Zn2+ on the glycine transporters, GLYT1b and GLYT2a, expressed in Xenopus laevis oocytes and we demonstrate that Zn2+ is a noncompetitive inhibitor of GLYT1 but has no effect on GLYT2. We have also investigated the molecular basis for these differences and the relationship between the Zn2+ and proton binding sites on GLYT1. Using site-directed mutagenesis, we identified 2 histidine residues, His-243 in the large second extracellular loop (ECL2) and His-410 in the fourth extracellular loop (ECL4), as two coordinates in the Zn2+ binding site of GLYT1b. In addition, our study suggests that the molecular determinants of proton regulation of GLYT1b are localized to the 2 histidine residues (His-410 and His-421) of ECL4. The ability of Zn2+ and protons to regulate the rate of glycine transport by interacting with residues situated in ECL4 of GLYT1b suggests that this region may influence the substrate translocation mechanism.


Asunto(s)
Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Zinc/metabolismo , Secuencia de Aminoácidos , Sistemas de Transporte de Aminoácidos Neutros/genética , Animales , Transporte Biológico , Encéfalo/metabolismo , Proteínas de Transporte de Glicina en la Membrana Plasmática , Humanos , Datos de Secuencia Molecular , Protones , Receptores de N-Metil-D-Aspartato/metabolismo , Alineación de Secuencia , Xenopus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...