Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Biomater Sci Eng ; 10(2): 1128-1138, 2024 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-38221709

RESUMEN

The physiological state of the human body can be indicated by analyzing the composition of sweat. In this research, a fluorescence-recovered wearable hydrogel patch has been designed and realized which can noninvasively monitor the glucose concentration in human sweat. Rare-earth nanoparticles (RENPs) of NaGdF4 doped with different elements (Yb, Er, and Ce) are synthesized and optimized for better luminescence in the near-infrared second (NIR-II) and visible region. In addition, RENPs are coated with CoOOH of which the absorbance has an extensive peak in the visible and NIR regions. The concentration of H2O2 in the environment can be detected by the fluorescence recovery degree of CoOOH-modified RENPs based on the fluorescence resonance energy transfer effect. For in vivo detection, the physiological state of oxidative stress at tumor sites can be visualized through its fluorescence in NIR-II with low background noise and high penetration depth. For the in vitro detection, CoOOH-modified RENP and glucose oxidase (GOx) were doped into a polyacrylamide hydrogel, and a patch that can emit green upconversion fluorescence under a 980 nm laser was prepared. Compared with the conventional electrochemical detection method, the fluorescence we presented has higher sensitivity and linear detection region to detect the glucose. This improved anti-interference sweat patch that can work in the dark environment was obtained, and the physiological state of the human body is conveniently monitored, which provides a new facile and convenient method to monitor the sweat status.


Asunto(s)
Cobalto , Metales de Tierras Raras , Nanopartículas , Óxidos , Dispositivos Electrónicos Vestibles , Humanos , Fluorescencia , Glucosa , Hidrogeles , Peróxido de Hidrógeno , Metales de Tierras Raras/química , Nanopartículas/química
2.
Front Cardiovasc Med ; 9: 940711, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36119736

RESUMEN

Aortic dissection (AD) is a fatal aortic disease with high mortality. Assessing the morphology of the aorta is critical for diagnostic and surgical decisions. Aortic centerline projection methods have been used to evaluate the morphology of the aorta. However, there is a big difference between the current model of primary plane projection (PPP) and the actual shape of individuals, which is not conducive to morphological statistical analysis. Finding a method to compress the three-dimensional information of the aorta into two dimensions is helpful to clinical decision-making. In this paper, the evaluation parameters, including contour length (CL), enclosure area, and the sum of absolute residuals (SAR), were introduced to objectively evaluate the optimal projection plane rather than artificial subjective judgment. Our results showed that the optimal projection plane could be objectively characterized by the three evaluation parameters. As the morphological criterion, SAR is optimal among the three parameters. Compared to the optimal projection plane selected by traditional PPP, our method has better AD discrimination in the analysis of aortic tortuosity, and is conducive to the clinical operation of AD. Thus, it has application prospects for the preprocessing techniques for the geometric morphology analysis of AD.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...