Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
1.
Toxics ; 12(7)2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-39058153

RESUMEN

Per- and polyfluoroalkyl substances (PFAS) are found in many consumer and industrial products. While some PFAS, notably perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS), are developmentally toxic in mammals, the vast majority of PFAS have not been evaluated for developmental toxicity potential. A concentration-response study of 182 unique PFAS chemicals using the zebrafish medium-throughput, developmental vertebrate toxicity assay was conducted to investigate chemical structural identifiers for toxicity. Embryos were exposed to each PFAS compound (≤100 µM) beginning on the day of fertilization. At 6 days post-fertilization (dpf), two independent observers graded developmental landmarks for each larva (e.g., mortality, hatching, swim bladder inflation, edema, abnormal spine/tail, or craniofacial structure). Thirty percent of the PFAS were developmentally toxic, but there was no enrichment of any OECD structural category. PFOS was developmentally toxic (benchmark concentration [BMC] = 7.48 µM); however, other chemicals were more potent: perfluorooctanesulfonamide (PFOSA), N-methylperfluorooctane sulfonamide (N-MeFOSA), ((perfluorooctyl)ethyl)phosphonic acid, perfluoro-3,6,9-trioxatridecanoic acid, and perfluorohexane sulfonamide. The developmental toxicity profile for these more potent PFAS is largely unexplored in mammals and other species. Based on these zebrafish developmental toxicity results, additional screening may be warranted to understand the toxicity profile of these chemicals in other species.

2.
Chem Res Toxicol ; 37(6): 878-893, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38736322

RESUMEN

Adaptive stress response pathways (SRPs) restore cellular homeostasis following perturbation but may activate terminal outcomes like apoptosis, autophagy, or cellular senescence if disruption exceeds critical thresholds. Because SRPs hold the key to vital cellular tipping points, they are targeted for therapeutic interventions and assessed as biomarkers of toxicity. Hence, we are developing a public database of chemicals that perturb SRPs to enable new data-driven tools to improve public health. Here, we report on the automated text-mining pipeline we used to build and curate the first version of this database. We started with 100 reference SRP chemicals gathered from published biomarker studies to bootstrap the database. Second, we used information retrieval to find co-occurrences of reference chemicals with SRP terms in PubMed abstracts and determined pairwise mutual information thresholds to filter biologically relevant relationships. Third, we applied these thresholds to find 1206 putative SRP perturbagens within thousands of substances in the Library of Integrated Network-Based Cellular Signatures (LINCS). To assign SRP activity to LINCS chemicals, domain experts had to manually review at least three publications for each of 1206 chemicals out of 181,805 total abstracts. To accomplish this efficiently, we implemented a machine learning approach to predict SRP classifications from texts to prioritize abstracts. In 5-fold cross-validation testing with a corpus derived from the 100 reference chemicals, artificial neural networks performed the best (F1-macro = 0.678) and prioritized 2479/181,805 abstracts for expert review, which resulted in 457 chemicals annotated with SRP activities. An independent analysis of enriched mechanisms of action and chemical use class supported the text-mined chemical associations (p < 0.05): heat shock inducers were linked with HSP90 and DNA damage inducers to topoisomerase inhibition. This database will enable novel applications of LINCS data to evaluate SRP activities and to further develop tools for biomedical information extraction from the literature.


Asunto(s)
Minería de Datos , Humanos , Estrés Fisiológico/efectos de los fármacos , Bases de Datos Factuales
3.
Toxics ; 12(4)2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38668494

RESUMEN

Per- and polyfluoroalkyl substances (PFAS) are widely used, and their fluorinated state contributes to unique uses and stability but also long half-lives in the environment and humans. PFAS have been shown to be toxic, leading to immunosuppression, cancer, and other adverse health outcomes. Only a small fraction of the PFAS in commerce have been evaluated for toxicity using in vivo tests, which leads to a need to prioritize which compounds to examine further. Here, we demonstrate a prioritization approach that combines human biomonitoring data (blood concentrations) with bioactivity data (concentrations at which bioactivity is observed in vitro) for 31 PFAS. The in vitro data are taken from a battery of cell-based assays, mostly run on human cells. The result is a Bioactive Concentration to Blood Concentration Ratio (BCBCR), similar to a margin of exposure (MoE). Chemicals with low BCBCR values could then be prioritized for further risk assessment. Using this method, two of the PFAS, PFOA (Perfluorooctanoic Acid) and PFOS (Perfluorooctane Sulfonic Acid), have BCBCR values < 1 for some populations. An additional 9 PFAS have BCBCR values < 100 for some populations. This study shows a promising approach to screening level risk assessments of compounds such as PFAS that are long-lived in humans and other species.

4.
Toxicology ; 501: 153694, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38043774

RESUMEN

Multiple new approach methods (NAMs) are being developed to rapidly screen large numbers of chemicals to aid in hazard evaluation and risk assessments. High-throughput transcriptomics (HTTr) in human cell lines has been proposed as a first-tier screening approach for determining the types of bioactivity a chemical can cause (activation of specific targets vs. generalized cell stress) and for calculating transcriptional points of departure (tPODs) based on changes in gene expression. In the present study, we examine a range of computational methods to calculate tPODs from HTTr data, using six data sets in which MCF7 cells cultured in two different media formulations were treated with a panel of 44 chemicals for 3 different exposure durations (6, 12, 24 hr). The tPOD calculation methods use data at the level of individual genes and gene set signatures, and compare data processed using the ToxCast Pipeline 2 (tcplfit2), BMDExpress and PLIER (Pathway Level Information ExtractoR). Methods were evaluated by comparing to in vitro PODs from a validated set of high-throughput screening (HTS) assays for a set of estrogenic compounds. Key findings include: (1) for a given chemical and set of experimental conditions, tPODs calculated by different methods can vary by several orders of magnitude; (2) tPODs are at least as sensitive to computational methods as to experimental conditions; (3) in comparison to an external reference set of PODs, some methods give generally higher values, principally PLIER and BMDExpress; and (4) the tPODs from HTTr in this one cell type are mostly higher than the overall PODs from a broad battery of targeted in vitro ToxCast assays, reflecting the need to test chemicals in multiple cell types and readout technologies for in vitro hazard screening.


Asunto(s)
Perfilación de la Expresión Génica , Transcriptoma , Humanos , Ensayos Analíticos de Alto Rendimiento/métodos , Estrógenos , Línea Celular , Medición de Riesgo/métodos
5.
Comput Toxicol ; 28: 1-17, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37990691

RESUMEN

This work estimates benchmarks for new approach method (NAM) performance in predicting organ-level effects in repeat dose studies of adult animals based on variability in replicate animal studies. Treatment-related effect values from the Toxicity Reference database (v2.1) for weight, gross, or histopathological changes in the adrenal gland, liver, kidney, spleen, stomach, and thyroid were used. Rates of chemical concordance among organ-level findings in replicate studies, defined by repeated chemical only, chemical and species, or chemical and study type, were calculated. Concordance was 39 - 88%, depending on organ, and was highest within species. Variance in treatment-related effect values, including lowest effect level (LEL) values and benchmark dose (BMD) values when available, was calculated by organ. Multilinear regression modeling, using study descriptors of organ-level effect values as covariates, was used to estimate total variance, mean square error (MSE), and root residual mean square error (RMSE). MSE values, interpreted as estimates of unexplained variance, suggest study descriptors accounted for 52-69% of total variance in organ-level LELs. RMSE ranged from 0.41 - 0.68 log10-mg/kg/day. Differences between organ-level effects from chronic (CHR) and subchronic (SUB) dosing regimens were also quantified. Odds ratios indicated CHR organ effects were unlikely if the SUB study was negative. Mean differences of CHR - SUB organ-level LELs ranged from -0.38 to -0.19 log10 mg/kg/day; the magnitudes of these mean differences were less than RMSE for replicate studies. Finally, in vitro to in vivo extrapolation (IVIVE) was employed to compare bioactive concentrations from in vitro NAMs for kidney and liver to LELs. The observed mean difference between LELs and mean IVIVE dose predictions approached 0.5 log10-mg/kg/day, but differences by chemical ranged widely. Overall, variability in repeat dose organ-level effects suggests expectations for quantitative accuracy of NAM prediction of LELs should be at least ± 1 log10-mg/kg/day, with qualitative accuracy not exceeding 70%.

6.
Toxics ; 11(2)2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36850973

RESUMEN

Per- and polyfluoroalkyl substances (PFAS) are a diverse group of man-made chemicals that are commonly found in body tissues. The toxicokinetics of most PFAS are currently uncharacterized, but long half-lives (t½) have been observed in some cases. Knowledge of chemical-specific t½ is necessary for exposure reconstruction and extrapolation from toxicological studies. We used an ensemble machine learning method, random forest, to model the existing in vivo measured t½ across four species (human, monkey, rat, mouse) and eleven PFAS. Mechanistically motivated descriptors were examined, including two types of surrogates for renal transporters: (1) physiological descriptors, including kidney geometry, for renal transporter expression and (2) structural similarity of defluorinated PFAS to endogenous chemicals for transporter affinity. We developed a classification model for t½ (Bin 1: <12 h; Bin 2: <1 week; Bin 3: <2 months; Bin 4: >2 months). The model had an accuracy of 86.1% in contrast to 32.2% for a y-randomized null model. A total of 3890 compounds were within domain of the model, and t½ was predicted using the bin medians: 4.9 h, 2.2 days, 33 days, and 3.3 years. For human t½, 56% of PFAS were classified in Bin 4, 7% were classified in Bin 3, and 37% were classified in Bin 2. This model synthesizes the limited available data to allow tentative extrapolation and prioritization.

7.
Chem Res Toxicol ; 35(11): 1929-1949, 2022 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-36301716

RESUMEN

Screening new compounds for potential bioactivities against cellular targets is vital for drug discovery and chemical safety. Transcriptomics offers an efficient approach for assessing global gene expression changes, but interpreting chemical mechanisms from these data is often challenging. Connectivity mapping is a potential data-driven avenue for linking chemicals to mechanisms based on the observation that many biological processes are associated with unique gene expression signatures (gene signatures). However, mining the effects of a chemical on gene signatures for biological mechanisms is challenging because transcriptomic data contain thousands of noisy genes. New connectivity mapping approaches seeking to distinguish signal from noise continue to be developed, spurred by the promise of discovering chemical mechanisms, new drugs, and disease targets from burgeoning transcriptomic data. Here, we analyze these approaches in terms of diverse transcriptomic technologies, public databases, gene signatures, pattern-matching algorithms, and statistical evaluation criteria. To navigate the complexity of connectivity mapping, we propose a harmonized scheme to coherently organize and compare published workflows. We first standardize concepts underlying transcriptomic profiles and gene signatures based on various transcriptomic technologies such as microarrays, RNA-Seq, and L1000 and discuss the widely used data sources such as Gene Expression Omnibus, ArrayExpress, and MSigDB. Next, we generalize connectivity mapping as a pattern-matching task for finding similarity between a query (e.g., transcriptomic profile for new chemical) and a reference (e.g., gene signature of known target). Published pattern-matching approaches fall into two main categories: vector-based use metrics like correlation, Jaccard index, etc., and aggregation-based use parametric and nonparametric statistics (e.g., gene set enrichment analysis). The statistical methods for evaluating the performance of different approaches are described, along with comparisons reported in the literature on benchmark transcriptomic data sets. Lastly, we review connectivity mapping applications in toxicology and offer guidance on evaluating chemical-induced toxicity with concentration-response transcriptomic data. In addition to serving as a high-level guide and tutorial for understanding and implementing connectivity mapping workflows, we hope this review will stimulate new algorithms for evaluating chemical safety and drug discovery using transcriptomic data.


Asunto(s)
Perfilación de la Expresión Génica , Transcriptoma , Perfilación de la Expresión Génica/métodos , Flujo de Trabajo , Bases de Datos Factuales , Descubrimiento de Drogas
8.
Reprod Toxicol ; 113: 172-188, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36122840

RESUMEN

Chemical risk assessment considers potentially susceptible populations including pregnant women and developing fetuses. Humans encounter thousands of chemicals in their environments, few of which have been fully characterized. Toxicokinetic (TK) information is needed to relate chemical exposure to potentially bioactive tissue concentrations. Observational data describing human gestational exposures are unavailable for most chemicals, but physiologically based TK (PBTK) models estimate such exposures. Development of chemical-specific PBTK models requires considerable time and resources. As an alternative, generic PBTK approaches describe a standardized physiology and characterize chemicals with a set of standard physical and TK descriptors - primarily plasma protein binding and hepatic clearance. Here we report and evaluate a generic PBTK model of a human mother and developing fetus. We used a published set of formulas describing the major anatomical and physiological changes that occur during pregnancy to augment the High-Throughput Toxicokinetics (httk) software package. We simulated the ratio of concentrations in maternal and fetal plasma and compared to literature in vivo measurements. We evaluated the model with literature in vivo time-course measurements of maternal plasma concentrations in pregnant and non-pregnant women. Finally, we prioritized chemicals measured in maternal serum based on predicted fetal brain concentrations. This new model can be used for TK simulations of 859 chemicals with existing human-specific in vitro TK data as well as any new chemicals for which such data become available. This gestational model may allow for in vitro to in vivo extrapolation of point of departure doses relevant to reproductive and developmental toxicity.


Asunto(s)
Modelos Biológicos , Femenino , Humanos , Medición de Riesgo , Toxicocinética
9.
Comput Toxicol ; 242022 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-36969381

RESUMEN

Per- and Polyfluoroalkyl substances (PFAS) are a class of synthetic chemicals that are in widespread use and present concerns for persistence, bioaccumulation and toxicity. Whilst a handful of PFAS have been characterised for their hazard profiles, the vast majority of PFAS have not been studied. The US Environmental Protection Agency (EPA) undertook a research project to screen ~150 PFAS through an array of different in vitro high throughput toxicity and toxicokinetic tests in order to inform chemical category and read-across approaches. A previous publication described the rationale behind the selection of an initial set of 75 PFAS, whereas herein, we describe how various category approaches were applied and extended to inform the selection of a second set of 75 PFAS from our library of approximately 430 commercially procured PFAS. In particular, we focus on the challenges in grouping PFAS for prospective analysis and how we have sought to develop and apply objective structure-based categories to profile the testing library and other PFAS inventories. We additionally illustrate how these categories can be enriched with other information to facilitate read-across inferences once experimental data become available. The availability of flexible, objective, reproducible and chemically intuitive categories to explore PFAS constitutes an important step forward in prioritising PFAS for further testing and assessment.

10.
Toxicol Sci ; 181(1): 68-89, 2021 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-33538836

RESUMEN

New approach methodologies (NAMs) that efficiently provide information about chemical hazard without using whole animals are needed to accelerate the pace of chemical risk assessments. Technological advancements in gene expression assays have made in vitro high-throughput transcriptomics (HTTr) a feasible option for NAMs-based hazard characterization of environmental chemicals. In this study, we evaluated the Templated Oligo with Sequencing Readout (TempO-Seq) assay for HTTr concentration-response screening of a small set of chemicals in the human-derived MCF7 cell model. Our experimental design included a variety of reference samples and reference chemical treatments in order to objectively evaluate TempO-Seq assay performance. To facilitate analysis of these data, we developed a robust and scalable bioinformatics pipeline using open-source tools. We also developed a novel gene expression signature-based concentration-response modeling approach and compared the results to a previously implemented workflow for concentration-response analysis of transcriptomics data using BMDExpress. Analysis of reference samples and reference chemical treatments demonstrated highly reproducible differential gene expression signatures. In addition, we found that aggregating signals from individual genes into gene signatures prior to concentration-response modeling yielded in vitro transcriptional biological pathway altering concentrations (BPACs) that were closely aligned with previous ToxCast high-throughput screening assays. Often these identified signatures were associated with the known molecular target of the chemicals in our test set as the most sensitive components of the overall transcriptional response. This work has resulted in a novel and scalable in vitro HTTr workflow that is suitable for high-throughput hazard evaluation of environmental chemicals.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento , Transcriptoma , Animales , Bioensayo , Biología Computacional , Humanos , Medición de Riesgo
11.
Comput Toxicol ; 20: 1-100185, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-35128218

RESUMEN

The Toxic Substances Control Act (TSCA) became law in the U.S. in 1976 and was amended in 2016. The amended law requires the U.S. EPA to perform risk-based evaluations of existing chemicals. Here, we developed a tiered approach to screen potential candidates based on their genotoxicity and carcinogenicity information to inform the selection of candidate chemicals for prioritization under TSCA. The approach was underpinned by a large database of carcinogenicity and genotoxicity information that had been compiled from various public sources. Carcinogenicity data included weight-of-evidence human carcinogenicity evaluations and animal cancer data. Genotoxicity data included bacterial gene mutation data from the Salmonella (Ames) and Escherichia coli WP2 assays and chromosomal mutation (clastogenicity) data. Additionally, Ames and clastogenicity outcomes were predicted using the alert schemes within the OECD QSAR Toolbox and the Toxicity Estimation Software Tool (TEST). The evaluation workflows for carcinogenicity and genotoxicity were developed along with associated scoring schemes to make an overall outcome determination. For this case study, two sets of chemicals, the TSCA Active Inventory non-confidential portion list available on the EPA CompTox Chemicals Dashboard (33,364 chemicals, 'TSCA Active List') and a representative proof-of-concept (POC) set of 238 chemicals were profiled through the two workflows to make determinations of carcinogenicity and genotoxicity potential. Of the 33,364 substances on the 'TSCA Active List', overall calls could be made for 20,371 substances. Here 46.67%% (9507) of substances were non-genotoxic, 0.5% (103) were scored as inconclusive, 43.93% (8949) were predicted genotoxic and 8.9% (1812) were genotoxic. Overall calls for genotoxicity could be made for 225 of the 238 POC chemicals. Of these, 40.44% (91) were non-genotoxic, 2.67% (6) were inconclusive, 6.22% (14) were predicted genotoxic, and 50.67% (114) genotoxic. The approach shows promise as a means to identify potential candidates for prioritization from a genotoxicity and carcinogenicity perspective.

12.
Chem Res Toxicol ; 34(2): 189-216, 2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33140634

RESUMEN

Since 2009, the Tox21 project has screened ∼8500 chemicals in more than 70 high-throughput assays, generating upward of 100 million data points, with all data publicly available through partner websites at the United States Environmental Protection Agency (EPA), National Center for Advancing Translational Sciences (NCATS), and National Toxicology Program (NTP). Underpinning this public effort is the largest compound library ever constructed specifically for improving understanding of the chemical basis of toxicity across research and regulatory domains. Each Tox21 federal partner brought specialized resources and capabilities to the partnership, including three approximately equal-sized compound libraries. All Tox21 data generated to date have resulted from a confluence of ideas, technologies, and expertise used to design, screen, and analyze the Tox21 10K library. The different programmatic objectives of the partners led to three distinct, overlapping compound libraries that, when combined, not only covered a diversity of chemical structures, use-categories, and properties but also incorporated many types of compound replicates. The history of development of the Tox21 "10K" chemical library and data workflows implemented to ensure quality chemical annotations and allow for various reproducibility assessments are described. Cheminformatics profiling demonstrates how the three partner libraries complement one another to expand the reach of each individual library, as reflected in coverage of regulatory lists, predicted toxicity end points, and physicochemical properties. ToxPrint chemotypes (CTs) and enrichment approaches further demonstrate how the combined partner libraries amplify structure-activity patterns that would otherwise not be detected. Finally, CT enrichments are used to probe global patterns of activity in combined ToxCast and Tox21 activity data sets relative to test-set size and chemical versus biological end point diversity, illustrating the power of CT approaches to discern patterns in chemical-activity data sets. These results support a central premise of the Tox21 program: A collaborative merging of programmatically distinct compound libraries would yield greater rewards than could be achieved separately.


Asunto(s)
Bibliotecas de Moléculas Pequeñas/toxicidad , Pruebas de Toxicidad , Ensayos Analíticos de Alto Rendimiento , Humanos , Estados Unidos , United States Environmental Protection Agency
14.
Sci Rep ; 10(1): 3986, 2020 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-32132587

RESUMEN

The U.S. federal consortium on toxicology in the 21st century (Tox21) produces quantitative, high-throughput screening (HTS) data on thousands of chemicals across a wide range of assays covering critical biological targets and cellular pathways. Many of these assays, and those used in other in vitro screening programs, rely on luciferase and fluorescence-based readouts that can be susceptible to signal interference by certain chemical structures resulting in false positive outcomes. Included in the Tox21 portfolio are assays specifically designed to measure interference in the form of luciferase inhibition and autofluorescence via multiple wavelengths (red, blue, and green) and under various conditions (cell-free and cell-based, two cell types). Out of 8,305 chemicals tested in the Tox21 interference assays, percent actives ranged from 0.5% (red autofluorescence) to 9.9% (luciferase inhibition). Self-organizing maps and hierarchical clustering were used to relate chemical structural clusters to interference activity profiles. Multiple machine learning algorithms were applied to predict assay interference based on molecular descriptors and chemical properties. The best performing predictive models (accuracies of ~80%) have been included in a web-based tool called InterPred that will allow users to predict the likelihood of assay interference for any new chemical structure and thus increase confidence in HTS data by decreasing false positive testing results.


Asunto(s)
Bases de Datos de Compuestos Químicos , Ensayos Analíticos de Alto Rendimiento , Pruebas de Toxicidad , Análisis por Conglomerados , Internet , Relación Estructura-Actividad Cuantitativa
15.
Toxicol Sci ; 174(2): 189-209, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32073639

RESUMEN

The Stemina devTOX quickPredict platform is a human pluripotent stem cell-based assay that predicts the developmental toxicity potential based on changes in cellular metabolism following chemical exposure [Palmer, J. A., Smith, A. M., Egnash, L. A., Conard, K. R., West, P. R., Burrier, R. E., Donley, E. L. R., and Kirchner, F. R. (2013). Establishment and assessment of a new human embryonic stem cell-based biomarker assay for developmental toxicity screening. Birth Defects Res. B Dev. Reprod. Toxicol. 98, 343-363]. Using this assay, we screened 1065 ToxCast phase I and II chemicals in single-concentration or concentration-response for the targeted biomarker (ratio of ornithine to cystine secreted or consumed from the media). The dataset from the Stemina (STM) assay is annotated in the ToxCast portfolio as STM. Major findings from the analysis of ToxCast_STM dataset include (1) 19% of 1065 chemicals yielded a prediction of developmental toxicity, (2) assay performance reached 79%-82% accuracy with high specificity (> 84%) but modest sensitivity (< 67%) when compared with in vivo animal models of human prenatal developmental toxicity, (3) sensitivity improved as more stringent weights of evidence requirements were applied to the animal studies, and (4) statistical analysis of the most potent chemical hits on specific biochemical targets in ToxCast revealed positive and negative associations with the STM response, providing insights into the mechanistic underpinnings of the targeted endpoint and its biological domain. The results of this study will be useful to improving our ability to predict in vivo developmental toxicants based on in vitro data and in silico models.


Asunto(s)
Alternativas a las Pruebas en Animales , Células Madre Pluripotentes/efectos de los fármacos , Pruebas de Toxicidad , Animales , Bioensayo , Biomarcadores/metabolismo , Línea Celular , Bases de Datos Factuales , Relación Dosis-Respuesta a Droga , Ensayos Analíticos de Alto Rendimiento , Humanos , Células Madre Pluripotentes/metabolismo , Células Madre Pluripotentes/patología , Medición de Riesgo
16.
Birth Defects Res ; 112(1): 19-39, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31471948

RESUMEN

Cleft palate has been linked to both genetic and environmental factors that perturb key events during palatal morphogenesis. As a developmental outcome, it presents a challenging, mechanistically complex endpoint for predictive modeling. A data set of 500 chemicals evaluated for their ability to induce cleft palate in animal prenatal developmental studies was compiled from Toxicity Reference Database and the biomedical literature, which included 63 cleft palate active and 437 inactive chemicals. To characterize the potential molecular targets for chemical-induced cleft palate, we mined the ToxCast high-throughput screening database for patterns and linkages in bioactivity profiles and chemical structural descriptors. ToxCast assay results were filtered for cytotoxicity and grouped by target gene activity to produce a "gene score." Following unsuccessful attempts to derive a global prediction model using structural and gene score descriptors, hierarchical clustering was applied to the set of 63 cleft palate positives to extract local structure-bioactivity clusters for follow-up study. Patterns of enrichment were confirmed on the complete data set, that is, including cleft palate inactives, and putative molecular initiating events identified. The clusters corresponded to ToxCast assays for cytochrome P450s, G-protein coupled receptors, retinoic acid receptors, the glucocorticoid receptor, and tyrosine kinases/phosphatases. These patterns and linkages were organized into preliminary decision trees and the resulting inferences were mapped to a putative adverse outcome pathway framework for cleft palate supported by literature evidence of current mechanistic understanding. This general data-driven approach offers a promising avenue for mining chemical-bioassay drivers of complex developmental endpoints where data are often limited.


Asunto(s)
Fisura del Paladar/etiología , Bibliotecas de Moléculas Pequeñas/análisis , Pruebas de Toxicidad/métodos , Análisis por Conglomerados , Bases de Datos Factuales , Femenino , Estudios de Seguimiento , Ensayos Analíticos de Alto Rendimiento/métodos , Humanos , Embarazo , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Medición de Riesgo
17.
Regul Toxicol Pharmacol ; 109: 104510, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31676319

RESUMEN

Synthesis of 11 steroid hormones in human adrenocortical carcinoma cells (H295R) was measured in a high-throughput steroidogenesis assay (HT-H295R) for 656 chemicals in concentration-response as part of the US Environmental Protection Agency's ToxCast program. This work extends previous analysis of the HT-H295R dataset and model by examining the utility of a novel prioritization metric based on the Mahalanobis distance that reduced these 11-dimensional data to 1-dimension via calculation of a mean Mahalanobis distance (mMd) at each chemical concentration screened for all hormone measures available. Herein, we evaluated the robustness of mMd values, and demonstrate that covariance and variance of the hormones measured appear independent of the chemicals screened and are inherent to the assay; the Type I error rate of the mMd method is less than 1%; and, absolute fold changes (up or down) of 1.5 to 2-fold have sufficient power for statistical significance. As a case study, we examined hormone responses for aromatase inhibitors in the HT-H295R assay and found high concordance with other ToxCast assays for known aromatase inhibitors. Finally, we used mMd and other ToxCast cytotoxicity data to demonstrate prioritization of the most selective and active chemicals as candidates for further in vitro or in silico screening.


Asunto(s)
Inhibidores de la Aromatasa/toxicidad , Disruptores Endocrinos/toxicidad , Ensayos Analíticos de Alto Rendimiento/métodos , Esteroides/biosíntesis , Línea Celular Tumoral , Interpretación Estadística de Datos , Conjuntos de Datos como Asunto , Reacciones Falso Positivas , Ensayos Analíticos de Alto Rendimiento/normas , Humanos , Reproducibilidad de los Resultados , Pruebas de Toxicidad/métodos , Pruebas de Toxicidad/normas , Estados Unidos , United States Environmental Protection Agency/normas
18.
Environ Sci Technol ; 53(21): 12793-12802, 2019 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-31560848

RESUMEN

QSAR modeling can be used to aid testing prioritization of the thousands of chemical substances for which no ecological toxicity data are available. We drew on the U.S. Environmental Protection Agency's ECOTOX database with additional data from ECHA to build a large data set containing in vivo test data on fish for thousands of chemical substances. This was used to create QSAR models to predict two types of end points: acute LC50 (median lethal concentration) and points of departure similar to the NOEC (no observed effect concentration) for any duration (named the "LC50" and "NOEC" models, respectively). These models used study covariates, such as species and exposure route, as features to facilitate the simultaneous use of varied data types. A novel method of substituting taxonomy groups for species dummy variables was introduced to maximize generalizability to different species. A stacked ensemble of three machine learning methods-random forest, gradient boosted trees, and support vector regression-was implemented to best make use of a large data set with many descriptors. The LC50 and NOEC models predicted end points within 1 order of magnitude 81% and 76% of the time, respectively, and had RMSEs of roughly 0.83 and 0.98 log10(mg/L), respectively. Benchmarks against the existing TEST and ECOSAR tools suggest improved prediction accuracy.


Asunto(s)
Peces , Relación Estructura-Actividad Cuantitativa , Animales , Dosificación Letal Mediana
19.
Toxicol Appl Pharmacol ; 380: 114707, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31404555

RESUMEN

New approach methodologies (NAMs) in chemical safety evaluation are being explored to address the current public health implications of human environmental exposures to chemicals with limited or no data for assessment. For over a decade since a push toward "Toxicity Testing in the 21st Century," the field has focused on massive data generation efforts to inform computational approaches for preliminary hazard identification, adverse outcome pathways that link molecular initiating events and key events to apical outcomes, and high-throughput approaches to risk-based ratios of bioactivity and exposure to inform relative priority and safety assessment. Projects like the interagency Tox21 program and the US EPA ToxCast program have generated dose-response information on thousands of chemicals, identified and aggregated information from legacy systems, and created tools for access and analysis. The resulting information has been used to develop computational models as viable options for regulatory applications. This progress has introduced challenges in data management that are new, but not unique, to toxicology. Some of the key questions require critical thinking and solutions to promote semantic interoperability, including: (1) identification of bioactivity information from NAMs that might be related to a biological process; (2) identification of legacy hazard information that might be related to a key event or apical outcomes of interest; and, (3) integration of these NAM and traditional data for computational modeling and prediction of complex apical outcomes such as carcinogenesis. This work reviews a number of toxicology-related efforts specifically related to bioactivity and toxicological data interoperability based on the goals established by Findable, Accessible, Interoperable, and Reusable (FAIR) Data Principles. These efforts are essential to enable better integration of NAM and traditional toxicology information to support data-driven toxicology applications.


Asunto(s)
Biología Computacional/métodos , Medición de Riesgo/métodos , Toxicología/métodos , Animales , Exposición a Riesgos Ambientales/efectos adversos , Contaminantes Ambientales/toxicidad , Predisposición Genética a la Enfermedad , Humanos , Fenotipo
20.
Toxicol Appl Pharmacol ; 380: 114683, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31325560

RESUMEN

Recent technological advances have moved the field of toxicogenomics from reliance on microarray platforms to high-throughput transcriptomic (HTTr) technologies that measure global gene expression. Gene expression biomarkers are emerging as useful tools for interpreting gene expression profiles to identify perturbations of targets of xenobiotic chemicals including those that act as endocrine disrupting chemicals (EDCs). Gene expression biomarkers are lists of similarly-regulated genes identified in global gene expression comparisons of cells or tissues 1) exposed to known agonists or antagonists of the transcription factor (TF) and 2) after expression of the TF itself is knocked down/knocked out or overexpressed. Estrogen receptor α (ERα) and androgen receptor (AR) biomarkers have been shown to be very accurate at identifying both agonists (94-97%) and antagonists (93-98%) in microarray data derived from human breast or prostate cancer cell lines. Importantly, the biomarkers have been shown to accurately replicate the results of computational models that predict ERα or AR modulation using multiple ToxCast HT screening assays. An integrated screening strategy using sets of biomarkers that simultaneously predict various EDC targets in relevant cell lines should simplify chemical screening without sacrificing accuracy. The biomarker predictions can be put into the context of the adverse outcome pathway framework to help prioritize chemicals with the greatest risk of potential adverse outcomes in the endocrine systems of animals and people.


Asunto(s)
Disruptores Endocrinos/toxicidad , Receptores Androgénicos/genética , Receptores de Estrógenos/genética , Animales , Biomarcadores/análisis , Expresión Génica , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...