Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
G3 (Bethesda) ; 10(5): 1511-1520, 2020 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-32132167

RESUMEN

Simple sugars are the essential foundation to plant life, and thus, their production, utilization, and storage are highly regulated processes with many complex genetic controls. Despite their importance, many of the genetic and biochemical mechanisms remain unknown or uncharacterized. Sorghum, a highly productive, diverse C4 grass important for both industrial and subsistence agricultural systems, has considerable phenotypic diversity in the accumulation of nonstructural sugars in the stem. We use this crop species to examine the genetic controls of high levels of sugar accumulation, identify genetic mechanisms for the accumulation of nonstructural sugars, and link carbon allocation with iron transport. We identify a species-specific tandem duplication event controlling sugar accumulation using genome-wide association analysis, characterize multiple allelic variants causing increased sugar content, and provide further evidence of a putative neofunctionalization event conferring adaptability in Sorghum bicolor Comparative genomics indicate that this event is unique to sorghum which may further elucidate evolutionary mechanisms for adaptation and divergence within the Poaceae. Furthermore, the identification and characterization of this event was only possible with the continued advancement and improvement of the reference genome. The characterization of this region and the process in which it was discovered serve as a reminder that any reference genome is imperfect and is in need of continual improvement.


Asunto(s)
Sorghum , Carbohidratos , Genoma de Planta , Estudio de Asociación del Genoma Completo , Poaceae/genética , Sorghum/genética
2.
Oncotarget ; 9(66): 32702-32717, 2018 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-30220976

RESUMEN

Muscle invasive bladder cancer (MIBC) is a common malignancy and major cause of morbidity worldwide. Over the last decade mortality rates for MIBC have not decreased as compared to other cancers indicating a need for novel strategies. The molecular chaperones HSP70 and HSP90 fold and maintain the 3-dimensional structures of numerous client proteins that signal for cancer cell growth and survival. Inhibition of HSP70 or HSP90 results in client protein degradation and associated oncogenic signaling. Here we targeted HSP70 and HSP90 with small molecule inhibitors that trap or block each chaperone in a low client-affinity "open" conformation. HSP70 inhibitors, VER155008 (VER) and MAL3-101 (MAL), along with HSP90 inhibitor, STA-9090 (STA), were tested alone and in combination for their ability to reduce cell viability and alter protein levels in 4 MIBC cell lines. When combined, VER+MAL synergistically reduced cell viability in each MIBC cell line while not inducing expression of heat shock proteins (HSPs). STA+MAL also synergistically reduced cell viability in each cell line but induced expression of cytoprotective HSPs indicating the merits of targeting HSP70 with VER+MAL. Additionally, we observed that STA induced the expression of the stress-related transcription factor HSF2 while reducing levels of the co-chaperone TTI1.

3.
Oncotarget ; 6(37): 39821-38, 2015 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-26556859

RESUMEN

Heat shock protein 90 (HSP90) plays a critical role in the survival of cancer cells including muscle invasive bladder cancer (MIBC). The addiction of tumor cells to HSP90 has promoted the development of numerous HSP90 inhibitors and their use in clinical trials. This study evaluated the role of inhibiting HSP90 using STA9090 (STA) alone or in combination with the HSP70 inhibitor VER155008 (VER) in several human MIBC cell lines. While both STA and VER inhibited MIBC cell growth and migration and promoted apoptosis, combination therapy was more effective. Therefore, the signaling pathways involved in MIBC were systematically interrogated following STA and/or VER treatments. STA and not VER reduced the expression of proteins in the p53/Rb, PI3K and SWI/SWF pathways. Interestingly, STA was not as effective as VER or combination therapy in degrading proteins involved in the histone modification pathway such as KDM6A (demethylase) and EP300 (acetyltransferase) as predicted by The Cancer Genome Atlas (TCGA) data. This data suggests that dual HSP90 and HSP70 inhibition can simultaneously disrupt the key signaling pathways in MIBC.


Asunto(s)
Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Transducción de Señal/fisiología , Apoptosis/efectos de los fármacos , Western Blotting , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Sinergismo Farmacológico , Proteínas HSP70 de Choque Térmico/antagonistas & inhibidores , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Humanos , Músculos/patología , Invasividad Neoplásica , Fosfatidilinositol 3-Quinasas/metabolismo , Nucleósidos de Purina/farmacología , Proteína de Retinoblastoma/metabolismo , Transducción de Señal/efectos de los fármacos , Triazoles/farmacología , Proteína p53 Supresora de Tumor/metabolismo , Neoplasias de la Vejiga Urinaria/metabolismo , Neoplasias de la Vejiga Urinaria/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...