Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
NPJ Regen Med ; 8(1): 25, 2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37217533

RESUMEN

Among therapeutic proteins, cytokines and growth factors have great potential for regenerative medicine applications. However, these molecules have encountered limited clinical success due to low effectiveness and major safety concerns, highlighting the need to develop better approaches that increase efficacy and safety. Promising approaches leverage how the extracellular matrix (ECM) controls the activity of these molecules during tissue healing. Using a protein motif screening strategy, we discovered that amphiregulin possesses an exceptionally strong binding motif for ECM components. We used this motif to confer the pro-regenerative therapeutics platelet-derived growth factor-BB (PDGF-BB) and interleukin-1 receptor antagonist (IL-1Ra) a very high affinity to the ECM. In mouse models, the approach considerably extended tissue retention of the engineered therapeutics and reduced leakage in the circulation. Prolonged retention and minimal systemic diffusion of engineered PDGF-BB abolished the tumour growth-promoting adverse effect that was observed with wild-type PDGF-BB. Moreover, engineered PDGF-BB was substantially more effective at promoting diabetic wound healing and regeneration after volumetric muscle loss, compared to wild-type PDGF-BB. Finally, while local or systemic delivery of wild-type IL-1Ra showed minor effects, intramyocardial delivery of engineered IL-1Ra enhanced cardiac repair after myocardial infarction by limiting cardiomyocyte death and fibrosis. This engineering strategy highlights the key importance of exploiting interactions between ECM and therapeutic proteins for developing effective and safer regenerative therapies.

2.
Commun Biol ; 4(1): 422, 2021 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-33772102

RESUMEN

Chronic wounds are a major clinical problem where wound closure is prevented by pathologic factors, including immune dysregulation. To design efficient immunotherapies, an understanding of the key molecular pathways by which immunity impairs wound healing is needed. Interleukin-1 (IL-1) plays a central role in regulating the immune response to tissue injury through IL-1 receptor (IL-1R1). Generating a knockout mouse model, we demonstrate that the IL-1-IL-1R1 axis delays wound closure in diabetic conditions. We used a protein engineering approach to deliver IL-1 receptor antagonist (IL-1Ra) in a localised and sustained manner through binding extracellular matrix components. We demonstrate that matrix-binding IL-1Ra improves wound healing in diabetic mice by re-establishing a pro-healing microenvironment characterised by lower levels of pro-inflammatory cells, cytokines and senescent fibroblasts, and higher levels of anti-inflammatory cytokines and growth factors. Engineered IL-1Ra has translational potential for chronic wounds and other inflammatory conditions where IL-1R1 signalling should be dampened.


Asunto(s)
Diabetes Mellitus Experimental/fisiopatología , Proteína Antagonista del Receptor de Interleucina 1/genética , Cicatrización de Heridas/fisiología , Animales , Proteína Antagonista del Receptor de Interleucina 1/metabolismo , Masculino , Ratones , Ratones Noqueados
3.
Nature ; 591(7849): 281-287, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33568815

RESUMEN

Skeletal muscle regenerates through the activation of resident stem cells. Termed satellite cells, these normally quiescent cells are induced to proliferate by wound-derived signals1. Identifying the source and nature of these cues has been hampered by an inability to visualize the complex cell interactions that occur within the wound. Here we use muscle injury models in zebrafish to systematically capture the interactions between satellite cells and the innate immune system after injury, in real time, throughout the repair process. This analysis revealed that a specific subset of macrophages 'dwell' within the injury, establishing a transient but obligate niche for stem cell proliferation. Single-cell profiling identified proliferative signals that are secreted by dwelling macrophages, which include the cytokine nicotinamide phosphoribosyltransferase (Nampt, which is also known as visfatin or PBEF in humans). Nampt secretion from the macrophage niche is required for muscle regeneration, acting through the C-C motif chemokine receptor type 5 (Ccr5), which is expressed on muscle stem cells. This analysis shows that in addition to their ability to modulate the immune response, specific macrophage populations also provide a transient stem-cell-activating niche, directly supplying proliferation-inducing cues that govern the repair process that is mediated by muscle stem cells. This study demonstrates that macrophage-derived niche signals for muscle stem cells, such as NAMPT, can be applied as new therapeutic modalities for skeletal muscle injury and disease.


Asunto(s)
Macrófagos/metabolismo , Músculo Esquelético/citología , Músculo Esquelético/lesiones , Mioblastos/citología , Nicotinamida Fosforribosiltransferasa/metabolismo , Nicho de Células Madre , Pez Cebra/metabolismo , Animales , Proliferación Celular , Modelos Animales de Enfermedad , Humanos , Macrófagos/citología , Masculino , Metaloproteinasa 9 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/metabolismo , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Mioblastos/metabolismo , Nicotinamida Fosforribosiltransferasa/genética , Factor de Transcripción PAX7/metabolismo , RNA-Seq , Receptores CCR5/genética , Receptores CCR5/metabolismo , Regeneración/fisiología , Análisis de la Célula Individual , Pez Cebra/inmunología
4.
Sci Adv ; 6(24): eaba7602, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32582857

RESUMEN

Although growth factors (GFs) are key molecules for regenerative medicine, their use has been limited by issues associated with suboptimal delivery systems and incomplete understanding of their signaling dynamics. Here, we explored how proinflammatory signals affect GF regenerative potential. Using bone regeneration in mouse, we found that the regenerative capacity of two clinically relevant GFs (BMP-2 and PDGF-BB) is impaired by interleukin-1 receptor (IL-1R1). Mechanistically, IL-1R1 activation in bone-forming cells desensitizes them to GFs and accelerates senescence. Moreover, administration of the GFs triggers IL-1 release by macrophages. To provide localized and sustained IL-1R1 inhibition, we engineered IL-1R antagonist (IL-1Ra) to bind the extracellular matrix (ECM) very strongly and demonstrate that codelivering GFs with ECM-binding IL-1Ra induces superior regeneration. Thus, we highlight that GF regenerative activity is hindered by proinflammatory signals, and GF-based therapies should integrate immunomodulation. Particularly, ECM-binding IL-1Ra holds clinical translational potential by enhancing efficacy of GF therapies.

5.
Nat Biomed Eng ; 4(4): 463-475, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31685999

RESUMEN

Growth factors can stimulate tissue regeneration, but the side effects and low effectiveness associated with suboptimal delivery systems have impeded their use in translational regenerative medicine. Physiologically, growth factor interactions with the extracellular matrix control their bioavailability and spatiotemporal cellular signalling. Growth factor signalling is also controlled at the cell surface level via binding to heparan sulfate proteoglycans, such as syndecans. Here we show that vascular endothelial growth factor-A (VEGF-A) and platelet-derived growth factor-BB (PDGF-BB) that were engineered to have a syndecan-binding sequence trigger sustained low-intensity signalling (tonic signalling) and reduce the desensitization of growth factor receptors. We also show in mouse models that tonic signalling leads to superior morphogenetic activity, with syndecan-binding growth factors inducing greater bone regeneration and wound repair than wild-type growth factors, as well as reduced tumour growth (associated with PDGF-BB delivery) and vascular permeability (triggered by VEGF-A). Tonic signalling via syndecan binding may also enhance the regenerative capacity of other growth factors.


Asunto(s)
Péptidos y Proteínas de Señalización Intercelular/farmacología , Transducción de Señal/efectos de los fármacos , Sindecanos/farmacología , Cicatrización de Heridas/efectos de los fármacos , Animales , Becaplermina/metabolismo , Regeneración Ósea/efectos de los fármacos , Permeabilidad Capilar/efectos de los fármacos , Membrana Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Matriz Extracelular/efectos de los fármacos , Proteoglicanos de Heparán Sulfato/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intercelular/sangre , Péptidos y Proteínas de Señalización Intercelular/genética , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Microfluídica , Modelos Animales , Neuropilina-1 , Receptores de Factores de Crecimiento/efectos de los fármacos , Factor A de Crecimiento Endotelial Vascular/metabolismo
6.
Artículo en Inglés | MEDLINE | ID: mdl-32039177

RESUMEN

Growth factors are critical molecules for tissue repair and regeneration. Therefore, recombinant growth factors have raised a lot of hope for regenerative medicine applications. While using growth factors to promote tissue healing has widely shown promising results in pre-clinical settings, their success in the clinic is not a forgone conclusion. Indeed, translation of growth factors is often limited by their short half-life, rapid diffusion from the delivery site, and low cost-effectiveness. Trying to circumvent those limitations by the use of supraphysiological doses has led to serious side-effects in many cases and therefore innovative technologies are required to improve growth factor-based regenerative strategies. In this review, we present protein engineering approaches seeking to improve growth factor delivery and efficacy while reducing doses and side effects. We focus on engineering strategies seeking to improve affinity of growth factors for biomaterials or the endogenous extracellular matrix. Then, we discuss some examples of increasing growth factor stability and bioactivity, and propose new lines of research that the field of growth factor engineering for regenerative medicine may adopt in the future.

7.
Artículo en Inglés | MEDLINE | ID: mdl-30057898

RESUMEN

The importance of immunity in tissue repair and regeneration is now evident. Thus, promoting tissue healing through immune modulation is a growing and promising field. Targeting microRNAs (miRNAs) is an appealing option since they regulate immunity through post-transcriptional gene fine-tuning in immune cells. Indeed, miRNAs are involved in inflammation as well as in its resolution by controlling immune cell phenotypes and functions. In this review, we first discuss the immunoregulatory role of miRNAs during the restoration of tissue homeostasis after injury, focusing mainly on neutrophils, macrophages and T lymphocytes. As tissue examples, we present the immunoregulatory function of miRNAs during the repair and regeneration of the heart, skeletal muscles, skin and liver. Secondly, we discuss recent technological advances for designing therapeutic strategies which target miRNAs. Specifically, we highlight the possible use of miRNAs and anti-miRNAs for promoting tissue regeneration via modulation of the immune system.

8.
Acta Biomater ; 53: 13-28, 2017 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-28119112

RESUMEN

The immune system plays a central role in tissue repair and regeneration. Indeed, the immune response to tissue injury is crucial in determining the speed and the outcome of the healing process, including the extent of scarring and the restoration of organ function. Therefore, controlling immune components via biomaterials and drug delivery systems is becoming an attractive approach in regenerative medicine, since therapies based on stem cells and growth factors have not yet proven to be broadly effective in the clinic. To integrate the immune system into regenerative strategies, one of the first challenges is to understand the precise functions of the different immune components during the tissue healing process. While remarkable progress has been made, the immune mechanisms involved are still elusive, and there is indication for both negative and positive roles depending on the tissue type or organ and life stage. It is well recognized that the innate immune response comprising danger signals, neutrophils and macrophages modulates tissue healing. In addition, it is becoming evident that the adaptive immune response, in particular T cell subset activities, plays a critical role. In this review, we first present an overview of the basic immune mechanisms involved in tissue repair and regeneration. Then, we highlight various approaches based on biomaterials and drug delivery systems that aim at modulating these mechanisms to limit fibrosis and promote regeneration. We propose that the next generation of regenerative therapies may evolve from typical biomaterial-, stem cell-, or growth factor-centric approaches to an immune-centric approach. STATEMENT OF SIGNIFICANCE: Most regenerative strategies have not yet proven to be safe or reasonably efficient in the clinic. In addition to stem cells and growth factors, the immune system plays a crucial role in the tissue healing process. Here, we propose that controlling the immune-mediated mechanisms of tissue repair and regeneration may support existing regenerative strategies or could be an alternative to using stem cells and growth factors. The first part of this review we highlight key immune mechanisms involved in the tissue healing process and marks them as potential target for designing regenerative strategies. In the second part, we discuss various approaches using biomaterials and drug delivery systems that aim at modulating the components of the immune system to promote tissue regeneration.


Asunto(s)
Regeneración/inmunología , Alarminas/inmunología , Animales , Materiales Biocompatibles , Células Dendríticas/inmunología , Sistemas de Liberación de Medicamentos , Humanos , Inmunidad Innata , Mediadores de Inflamación/administración & dosificación , Mediadores de Inflamación/inmunología , Leucocitos/inmunología , Mastocitos/inmunología , Células Mieloides/inmunología , Pericitos/inmunología , Medicina Regenerativa , Cicatrización de Heridas/inmunología , Heridas y Lesiones/inmunología
9.
Vaccine ; 34(21): 2453-2459, 2016 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-27016652

RESUMEN

Subunit vaccines, employing purified protein antigens rather than intact pathogens, require the addition of adjuvants for enhanced immunogenicity with a correct balance between strong activation of the immune system and low toxicity. Here we show that the endogenous (i.e., autologous) non-toxic TLR4 agonist extra domain A type III repeat of fibronectin (FNIII EDA) can synergize with the exogenous (i.e., bacterial), toxic-at-high-dose, TLR9 agonist CpG to induce efficient cellular immune responses while keeping the dose of CpG low. The efficacy of the combined TLR agonists, even at half-doses, led to stronger dendritic cell activation, enhanced cytotoxic T lymphocyte activation as well as stronger humoral response, compared to the individual agonists given at full doses. Immune cells induced after vaccination with the co-adjuvanted formulation could mediate tumor regression in an E.G7-OVA tumor model, and eradicate circulating hepatitis B virus (HBV) in a transgenic HBV model. Together, these results show that endogenous TLR agonists, such as variants of FNIII EDA, can synergize with exogenous TLR ligands, such as CpG, and strongly enhance cellular immune responses, while improving their safety profile.


Asunto(s)
Vacunas contra el Cáncer/inmunología , Fibronectinas/inmunología , Vacunas contra Hepatitis B/inmunología , Oligodesoxirribonucleótidos/inmunología , Linfocitos T Citotóxicos/inmunología , Células TH1/inmunología , Receptor Toll-Like 4/agonistas , Adyuvantes Inmunológicos/administración & dosificación , Animales , Vacunas contra el Cáncer/administración & dosificación , Células Dendríticas/inmunología , Modelos Animales de Enfermedad , Fibronectinas/química , Hepatitis B/inmunología , Hepatitis B/virología , Vacunas contra Hepatitis B/administración & dosificación , Virus de la Hepatitis B/inmunología , Inmunidad Celular , Inmunidad Humoral , Ratones , Ratones Transgénicos , Receptores de Reconocimiento de Patrones , Receptor Toll-Like 4/inmunología , Receptor Toll-Like 9/agonistas , Receptor Toll-Like 9/inmunología , Vacunación
10.
Sci Rep ; 5: 8569, 2015 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-25708982

RESUMEN

Fibronectin (FN) is an extracellular matrix (ECM) protein including numerous fibronectin type III (FNIII) repeats with different functions. The alternatively spliced FN variant containing the extra domain A (FNIII EDA), located between FNIII 11 and FNIII 12, is expressed in sites of injury, chronic inflammation, and solid tumors. Although its function is not well understood, FNIII EDA is known to agonize Toll-like receptor 4 (TLR4). Here, by producing various FN fragments containing FNIII EDA, we found that FNIII EDA's immunological activity depends upon its local intramolecular context within the FN chain. N-terminal extension of the isolated FNIII EDA with its neighboring FNIII repeats (FNIII 9-10-11) enhanced its activity in agonizing TLR4, while C-terminal extension with the native FNIII 12-13-14 heparin-binding domain abrogated it. In addition, we reveal that an elastase 2 cleavage site is present between FNIII EDA and FNIII 12. Activity of the C-terminally extended FNIII EDA could be restored after cleavage of the FNIII 12-13-14 domain by elastase 2. FN being naturally bound to the ECM, we immobilized FNIII EDA-containing FN fragments within a fibrin matrix model along with antigenic peptides. Such matrices were shown to stimulate cytotoxic CD8(+) T cell responses in two murine cancer models.


Asunto(s)
Vacunas contra el Cáncer/inmunología , Fibronectinas/química , Serina Endopeptidasas/metabolismo , Receptor Toll-Like 4/agonistas , Animales , Linfocitos T CD8-positivos/citología , Linfocitos T CD8-positivos/inmunología , Vacunas contra el Cáncer/uso terapéutico , Línea Celular Tumoral , Modelos Animales de Enfermedad , Fibrina/metabolismo , Fibronectinas/genética , Fibronectinas/inmunología , Lipopolisacáridos/inmunología , Melanoma Experimental/inmunología , Melanoma Experimental/patología , Melanoma Experimental/prevención & control , Ratones , Ratones Endogámicos C57BL , Ovalbúmina/inmunología , Estructura Terciaria de Proteína , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/inmunología , Receptor Toll-Like 4/metabolismo , Trasplante Homólogo
11.
Proc Natl Acad Sci U S A ; 110(49): 19902-7, 2013 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-24248387

RESUMEN

In subunit vaccines, strong CD8(+) T-cell responses are desired, yet they are elusive at reasonable adjuvant doses. We show that targeting adjuvant to the lymph node (LN) via ultrasmall polymeric nanoparticles (NPs), which rapidly drain to the LN after intradermal injection, greatly enhances adjuvant efficacy at low doses. Coupling CpG-B or CpG-C oligonucleotides to NPs led to better dual-targeting of adjuvant and antigen (codelivered on separate NPs) in cross-presenting dendritic cells compared with free adjuvant. This led to enhanced dendritic cell maturation and T helper 1 (Th1)-cytokine secretion, in turn driving stronger effector CD8(+) T-cell activation with enhanced cytolytic profiles and, importantly, more powerful memory recall. With only 4 µg CpG, NP-CpG-B could substantially protect mice from syngeneic tumor challenge, even after 4 mo of vaccination, compared with free CpG-B. Together, these results show that nanocarriers can enhance vaccine efficacy at a low adjuvant dose for inducing potent and long-lived cellular immunity.


Asunto(s)
Adyuvantes Inmunológicos/metabolismo , Linfocitos T CD8-positivos/inmunología , Inmunidad Celular/inmunología , Memoria Inmunológica/inmunología , Nanopartículas/metabolismo , Neoplasias/prevención & control , Oligodesoxirribonucleótidos/metabolismo , Animales , Sistemas de Liberación de Medicamentos/métodos , Inyecciones Intradérmicas , Ganglios Linfáticos/citología , Ratones , Nanopartículas/administración & dosificación , Oligodesoxirribonucleótidos/inmunología , Vacunas de Subunidad/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...