Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Environ Int ; 185: 108545, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38447454

RESUMEN

Over the last few years, the cumulative use of antibiotics in healthcare institutions, as well as the rearing of livestock and poultry, has resulted in the accumulation of antibiotic resistance genes (ARGs). This presents a substantial danger to human health worldwide. The characteristics of airborne ARGs, especially those transferred from outdoors to indoors, remains largely unexplored in neighborhoods, even though a majority of human population spends most of their time there. We investigated airborne ARGs and mobile genetic element (MGE, IntI1), plant communities, and airborne microbiota transferred indoors, as well as respiratory disease (RD) prevalence using a combination of metabarcode sequencing, real-time quantitative PCR and questionnaires in 72 neighborhoods in Shanghai. We hypothesized that (i) urbanization regulates ARGs abundance, (ii) the urbanization effect on ARGs varies seasonally, and (iii) land use types are associated with ARGs abundance. Supporting these hypotheses, during the warm season, the abundance of ARGs in peri-urban areas was higher than in urban areas. The abundance of ARGs was also affected by the surrounding land use and plant communities: an increase in the proportion of gray infrastructure (e.g., residential area) around neighborhoods can lead to an increase in some ARGs (mecA, qnrA, ermB and mexD). Additionally, there were variations observed in the relationship between ARGs and bacterial genera in different seasons. Specifically, Stenotrophomonas and Campylobacter were positively correlated with vanA during warm seasons, whereas Pseudomonas, Bacteroides, Treponema and Stenotrophomonas positively correlated with tetX in the cold season. Interstingly, a noteworthy positive correlation was observed between the abundance of vanA and the occurrence of both rhinitis and rhinoconjunctivitis. Taken together, our study underlines the importance of urbanization and season in controlling the indoor transfer of airborne ARGs. Furthermore, we also highlight the augmentation of green-blue infrastructure in urban environments has the potential to mitigate an excess of ARGs.


Asunto(s)
Genes Bacterianos , Urbanización , Humanos , Antibacterianos/farmacología , China , Farmacorresistencia Microbiana/genética
2.
Mycologia ; 115(6): 749-767, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37874894

RESUMEN

Diverse fungi colonize plant roots worldwide and include species from many orders of the phylum Ascomycota. These fungi include taxa with dark septate hyphae that colonize grass roots and may modulate plant responses to stress. We describe a novel group of fungal isolates and evaluate their effects on the grass Bouteloua gracilis in vitro. We isolated fungi from roots of six native grasses from 24 sites spanning replicated latitudinal gradients in the south-central US grasslands and characterized isolates phylogenetically using a genome analysis. We analyzed 14 isolates representing a novel clade within the family Montagnulaceae (order Pleosporales), here typified as Pleoardoris graminearum, closely related to the genera Didymocrea and Bimuria. This novel species produces asexual, light brown pycnidium-like conidioma, hyaline hyphae, and chlamydospores when cultured on quinoa and kiwicha agar. To evaluate its effects on B. gracilis, seeds were inoculated with one of three isolates (DS304, DS334, and DS1613) and incubated at 25 C for 20 d. We also tested the effect of volatile organic compounds (VOCs) produced by the same isolates on B. gracilis root and stem lengths. Isolates had variable effects on plant growth. One isolate increased B. gracilis root length up to 34% compared with uninoculated controls. VOCs produced by two isolates increased root and stem lengths (P < 0.05) compared with controls. Internal transcribed spacer ITS2 metabarcode data revealed that P. graminearum is distributed across a wide range of sites in North America (22 of 24 sites sampled), and its relative abundance is influenced by host species identity and latitude. Host species identity and site were the most important factors determining P. graminearum relative abundance in drought experiments at the Extreme Drought in the Grasslands Experiment (EDGE) sites. Variable responses of B. gracilis to inoculation highlight the potential importance of nonmycorrhizal root-associated fungi on plant survival in arid ecosystems.


Asunto(s)
Ascomicetos , Ecosistema , Raíces de Plantas/microbiología , Hifa , Plantas
3.
Microbiol Spectr ; : e0020823, 2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37606438

RESUMEN

Due to climate change, drought frequencies and severities are predicted to increase across the United States. Plant responses and adaptation to stresses depend on plant genetic and environmental factors. Understanding the effect of those factors on plant performance is required to predict species' responses to environmental change. We used reciprocal gardens planted with distinct regional ecotypes of the perennial grass Andropogon gerardii adapted to dry, mesic, and wet environments to characterize their rhizosphere communities using 16S rRNA metabarcode sequencing. Even though the local microbial pool was the main driver of these rhizosphere communities, the significant plant ecotypic effect highlighted active microbial recruitment in the rhizosphere, driven by ecotype or plant genetic background. Our data also suggest that ecotypes planted at their homesites were more successful in recruiting rhizosphere community members that were unique to the location. The link between the plants' homesite and the specific local microbes supported the "home field advantage" hypothesis. The unique homesite microbes may represent microbial specialists that are linked to plant stress responses. Furthermore, our data support ecotypic variation in the recruitment of congeneric but distinct bacterial variants, highlighting the nuanced plant ecotype effects on rhizosphere microbiome recruitment. These results improve our understanding of the complex plant host-soil microbe interactions and should facilitate further studies focused on exploring the functional potential of recruited microbes. Our study has the potential to aid in predicting grassland ecosystem responses to climate change and impact restoration management practices to promote grassland sustainability. IMPORTANCE In this study, we used reciprocal gardens located across a steep precipitation gradient to characterize rhizosphere communities of distinct dry, mesic, and wet regional ecotypes of the perennial grass Andropogon gerardii. We used 16S rRNA amplicon sequencing and focused oligotyping analysis and showed that even though location was the main driver of the microbial communities, ecotypes could potentially recruit distinct bacterial populations. We showed that different A. gerardii ecotypes were more successful in overall community recruitment and recruitment of microbes unique to the "home" environment, when growing at their "home site." We found evidence for "home-field advantage" interactions between the host and host-root-associated bacterial communities, and the capability of ecotypes to recruit specialized microbes that were potentially linked to plant stress responses. Our study aids in a better understanding of the factors that affect plant adaptation, improve management strategies, and predict grassland function under the changing climate.

4.
Appl Environ Microbiol ; 89(6): e0184322, 2023 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-37222583

RESUMEN

Understanding factors influencing microbial interactions, and designing methods to identify key taxa that are candidates for synthetic communities, or SynComs, are complex challenges for achieving microbiome-based agriculture. Here, we study how grafting and the choice of rootstock influences root-associated fungal communities in a grafted tomato system. We studied three tomato rootstocks (BHN589, RST-04-106, and Maxifort) grafted to a BHN589 scion and profiled the fungal communities in the endosphere and rhizosphere by sequencing the internal transcribed spacer (ITS2). The data provided evidence for a rootstock effect (explaining ~2% of the total captured variation, P < 0.01) on the fungal community. Moreover, the most productive rootstock, Maxifort, supported greater fungal species richness than the other rootstocks or controls. We then constructed a phenotype-operational taxonomic unit (OTU) network analysis (PhONA) using an integrated machine learning and network analysis approach based on fungal OTUs and associated tomato yield as the phenotype. PhONA provides a graphical framework to select a testable and manageable number of OTUs to support microbiome-enhanced agriculture. We identified differentially abundant OTUs specific to each rootstock in both endosphere and rhizosphere compartments. Subsequent analyses using PhONA identified OTUs that were directly associated with tomato fruit yield and others that were indirectly linked to yield through their links to these OTUs. Fungal OTUs that are directly or indirectly linked with tomato yield may represent candidates for synthetic communities to be explored in agricultural systems. IMPORTANCE The realized benefits of microbiome analyses for plant health and disease management are often limited by the lack of methods to select manageable and testable synthetic microbiomes. We evaluated the composition and diversity of root-associated fungal communities from grafted tomatoes. We then constructed a phenotype-OTU network analysis (PhONA) using these linear and network models. By incorporating yield data in the network, PhONA identified OTUs that were directly predictive of tomato yield and others that were indirectly linked to yield through their links to these OTUs. Follow-up functional studies of taxa associated with effective rootstocks, identified using approaches such as PhONA, could support the design of synthetic fungal communities for microbiome-based crop production and disease management. The PhONA framework is flexible for incorporation of other phenotypic data, and the underlying models can readily be generalized to accommodate other microbiome or 'omics data.


Asunto(s)
Microbiota , Micobioma , Solanum lycopersicum , Raíces de Plantas/microbiología , Rizosfera
5.
Artículo en Inglés | MEDLINE | ID: mdl-36540098

RESUMEN

In the aquatic environment, mosquito larvae encounter bacteria and fungi that assemble into bacterial and fungal communities. The composition and impact of mosquito-associated bacterial community has been reported across larvae of various mosquito species. However, knowledge on the composition of mosquito-associated fungal communities and the drivers of their assembly remain largely unclear, particularly across mosquito species. In this study, we used high throughput sequencing of the fungal Internal transcribed spacer 2 (ITS2) metabarcode marker to identify fungal operational taxonomic units (OTUs) and amplicon sequence variants (ASVs) associated with field-collected Culex restuans and Culex pipiens larvae and their breeding water. Our analyses identified diverse fungal communities across larval breeding sites collected on a fine geographic scale. Our data show that the larval breeding site is the major determinant of fungal community assembly in these mosquito species. We also identified distinct fungal communities in guts and carcasses within each species. However, these tissue-specific patterns were less evident in Cx. restuans than in Cx. pipiens larvae. The broad ecological patterns of fungal community assembly in mosquito larvae did not vary between OTU and ASV analyses. Together, this study provides the first insight into the fungal community composition and diversity in field collected Cx. restuans and Cx. pipiens larvae using OTUs and ASVs. While these findings largely recapitulate our previous analyses in Aedes albopictus larvae, we report minor differences in tissue-specific fungal community assembly in Cx. restuans larvae. Our results suggest that while the fungal community assembly in mosquito larvae may be generalized across mosquito species, variation in larval feeding behavior may impact fungal community assembly in the guts of mosquito larvae.

6.
mSystems ; 7(6): e0091322, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36394319

RESUMEN

Soil fungi facilitate the translocation of inorganic nutrients from soil minerals to other microorganisms and plants. This ability is particularly advantageous in impoverished soils because fungal mycelial networks can bridge otherwise spatially disconnected and inaccessible nutrient hot spots. However, the molecular mechanisms underlying fungal mineral weathering and transport through soil remains poorly understood primarily due to the lack of a platform for spatially resolved analysis of biotic-driven mineral weathering. Here, we addressed this knowledge gap by demonstrating a mineral-doped soil micromodel platform where mineral weathering mechanisms can be studied. We directly visualize acquisition and transport of inorganic nutrients from minerals through fungal hyphae in the micromodel using a multimodal imaging approach. We found that Fusarium sp. strain DS 682, a representative of common saprotrophic soil fungus, exhibited a mechanosensory response (thigmotropism) around obstacles and through pore spaces (~12 µm) in the presence of minerals. The fungus incorporated and translocated potassium (K) from K-rich mineral interfaces, as evidenced by visualization of mineral-derived nutrient transport and unique K chemical moieties following fungus-induced mineral weathering. Specific membrane transport proteins were expressed in the fungus in the presence of minerals, including those involved in oxidative phosphorylation pathways and the transmembrane transport of small-molecular-weight organic acids. This study establishes the significance of a spatial visualization platform for investigating microbial induced mineral weathering at microbially relevant scales. Moreover, we demonstrate the importance of fungal biology and nutrient translocation in maintaining fungal growth under water and carbon limitations in a reduced-complexity soil-like microenvironment. IMPORTANCE Fungal species are foundational members of soil microbiomes, where their contributions in accessing and transporting vital nutrients is key for community resilience. To date, the molecular mechanisms underlying fungal mineral weathering and nutrient translocation in low-nutrient environments remain poorly resolved due to the lack of a platform for spatial analysis of biotic weathering processes. Here, we addressed this knowledge gap by developing a mineral-doped soil micromodel platform. We demonstrate the function of this platform by directly probing fungal growth using spatially resolved optical and chemical imaging methodologies. We found the presence of minerals was required for fungal thigmotropism around obstacles and through soil-like pore spaces, and this was related to fungal transport of potassium (K) and corresponding K speciation from K-rich minerals. These findings provide new evidence and visualization into hyphal transport of mineral-derived nutrients under nutrient and water stresses.


Asunto(s)
Hifa , Micorrizas , Hifa/química , Micorrizas/química , Minerales/análisis , Potasio/análisis , Suelo/química
7.
BMC Genomics ; 23(1): 784, 2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36451103

RESUMEN

BACKGROUND: Climate change will result in more frequent droughts that can impact soil-inhabiting microbiomes (rhizobiomes) in the agriculturally vital North American perennial grasslands. Rhizobiomes have contributed to enhancing drought resilience and stress resistance properties in plant hosts. In the predicted events of more future droughts, how the changing rhizobiome under environmental stress can impact the plant host resilience needs to be deciphered. There is also an urgent need to identify and recover candidate microorganisms along with their functions, involved in enhancing plant resilience, enabling the successful development of synthetic communities. RESULTS: In this study, we used the combination of cultivation and high-resolution genomic sequencing of bacterial communities recovered from the rhizosphere of a tallgrass prairie foundation grass, Andropogon gerardii. We cultivated the plant host-associated microbes under artificial drought-induced conditions and identified the microbe(s) that might play a significant role in the rhizobiome of Andropogon gerardii under drought conditions. Phylogenetic analysis of the non-redundant metagenome-assembled genomes (MAGs) identified a bacterial genome of interest - MAG-Pseudomonas. Further metabolic pathway and pangenome analyses recovered genes and pathways related to stress responses including ACC deaminase; nitrogen transformation including assimilatory nitrate reductase in MAG-Pseudomonas, which might be associated with enhanced drought tolerance and growth for Andropogon gerardii. CONCLUSIONS: Our data indicated that the metagenome-assembled MAG-Pseudomonas has the functional potential to contribute to the plant host's growth during stressful conditions. Our study also suggested the nitrogen transformation potential of MAG-Pseudomonas that could impact Andropogon gerardii growth in a positive way. The cultivation of MAG-Pseudomonas sets the foundation to construct a successful synthetic community for Andropogon gerardii. To conclude, stress resilience mediated through genes ACC deaminase, nitrogen transformation potential through assimilatory nitrate reductase in MAG-Pseudomonas could place this microorganism as an important candidate of the rhizobiome aiding the plant host resilience under environmental stress. This study, therefore, provided insights into the MAG-Pseudomonas and its potential to optimize plant productivity under ever-changing climatic patterns, especially in frequent drought conditions.


Asunto(s)
Andropogon , Poa , Rizosfera , Sequías , Pseudomonas , Filogenia , Nitrógeno , Nitrato Reductasas
8.
Microbiol Spectr ; 10(3): e0239121, 2022 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-35442065

RESUMEN

Environmental change, especially frequent droughts, is predicted to detrimentally impact the North American perennial grasslands. Consistent dry spells will affect plant communities as well as their associated rhizobiomes, possibly altering the plant host performance under environmental stress. Therefore, there is a need to understand the impact of drought on the rhizobiome, and how the rhizobiome may modulate host performance and ameliorate its response to drought stress. In this study, we analyzed bacterial and fungal communities in the rhizospheres of three ecotypes (dry, mesic, and wet) of dominant prairie grass, Andropogon gerardii. The ecotypes were established in 2010 in a common garden design and grown for a decade under persistent dry conditions at the arid margin of the species' range in Colby, Kansas. The experiment aimed to answer whether and to what extent do the different ecotypes maintain or recruit distinct rhizobiomes after 10 years in an arid climate. In order to answer this question, we screened the bacterial and fungal rhizobiome profiles of the ecotypes under the arid conditions of western Kansas as a surrogate for future climate environmental stress using 16S rRNA and ITS2 metabarcoding sequencing. Under these conditions, bacterial communities differed compositionally among the A. gerardii ecotypes, whereas the fungal communities did not. The ecotypes were instrumental in driving the differences among bacterial rhizobiomes, as the ecotypes maintained distinct bacterial rhizobiomes even after 10 years at the edge of the host species range. This study will aid us to optimize plant productivity through the use of different ecotypes under future abiotic environmental stress, especially drought. IMPORTANCE In this study, we used a 10-year long reciprocal garden system, and reports that different ecotypes (dry, mesic, and wet) of dominant prairie grass, Andropogon gerardii can maintain or recruit distinct bacterial but not fungal rhizobiomes after 10 years in an arid environment. We used both 16S rRNA and ITS2 amplicons to analyze the bacterial and fungal communities in the rhizospheres of the respective ecotypes. We showed that A. gerardii might regulate the bacterial community to adapt to the arid environment, in which some ecotypes were not adapted to. Our study also suggested a possible tradeoff between the generalist and the specialist bacterial communities in specific environments, which could benefit the plant host. Our study will provide insights into the plant host regulation of the rhizosphere bacterial and fungal communities, especially during frequent drought conditions anticipated in the future.


Asunto(s)
Andropogon , Micobioma , Andropogon/genética , Bacterias/genética , Ecotipo , Poaceae/genética , ARN Ribosómico 16S/genética , Rizosfera , Microbiología del Suelo
9.
Mycologia ; 114(2): 254-269, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35394886

RESUMEN

Darksidea is a common genus of dark septate fungi-a group of ascomycetes in semiarid regions. A survey reported D. alpha and a distinct Darksidea lineage as abundant root-associated fungi of foundational grasses in North America. Fungi were isolated, and metabarcode data were obtained from sequencing of fungal communities of grass roots in the United States. During a comprehensive investigation of the Darksidea lineage, we carried out polyphasic taxonomy, genomic characterization, and identification of host associations, geographic distribution, and environmental factors that correlate with its abundance. For molecular phylogenetic studies, seven loci were sequenced. Isolates of the distinct Darksidea had variable colony morphology. No sexual reproductive structures were detected, but chlamydospores were frequently observed. The complete genome of an isolate of the lineage was sequenced with a size of 52.3 Mb including 14 707 gene models. Based on morphology and phylogenetic analysis, we propose the novel species Darksidea phi, sp. nov. Metabarcoding data showed that D. phi distribution and relative abundance were not limited to semiarid regions or a specific grass species, suggesting low host specificity among graminoids. This new species, D. phi, expands the distribution of the genus in the United States beyond prior reports from arid regions.


Asunto(s)
Ascomicetos , Raíces de Plantas , Clima Desértico , Endófitos , Filogenia , Raíces de Plantas/microbiología , Poaceae
10.
Mycologia ; 114(2): 215-241, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35344467

RESUMEN

Fires occur in most terrestrial ecosystems where they drive changes in the traits, composition, and diversity of fungal communities. Fires range from rare, stand-replacing wildfires to frequent, prescribed fires used to mimic natural fire regimes. Fire regime factors, including burn severity, fire intensity, and timing, vary widely and likely determine how fungi respond to fires. Despite the importance of fungi to post-fire plant communities and ecosystem functioning, attempts to identify common fungal responses and their major drivers are lacking. This synthesis addresses this knowledge gap and ranges from fire adaptations of specific fungi to succession and assembly fungal communities as they respond to spatially heterogenous burning within the landscape. Fires impact fungi directly and indirectly through their effects on fungal survival, substrate and habitat modifications, changes in environmental conditions, and/or physiological responses of the hosts with which fungi interact. Some specific pyrophilous, or "fire-loving," fungi often appear after fire. Our synthesis explores whether such taxa can be considered cosmopolitan, and whether they are truly fire-adapted or simply opportunists adapted to rapidly occupy substrates and habitats made available by fires. We also discuss the possible inoculum sources of post-fire fungi and explore existing conceptual models and ecological frameworks that may be useful in generalizing fungal fire responses. We conclude with identifying research gaps and areas that may best transform the current knowledge and understanding of fungal responses to fire.


Asunto(s)
Incendios , Micobioma , Incendios Forestales , Ecosistema , Plantas
11.
Front Fungal Biol ; 3: 805225, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-37746168

RESUMEN

Plant communities and fungi inhabiting their phyllospheres change along precipitation gradients and often respond to changes in land use. Many studies have focused on the changes in foliar fungal communities on specific plant species, however, few have addressed the association between whole plant communities and their phyllosphere fungi. We sampled plant communities and associated phyllosphere fungal communities in native prairie remnants and post-agricultural sites across the steep precipitation gradient in the central plains in Kansas, USA. Plant community cover data and MiSeq ITS2 metabarcode data of the phyllosphere fungal communities indicated that both plant and fungal community composition respond strongly to mean annual precipitation (MAP), but less so to land use (native prairie remnants vs. post-agricultural sites). However, plant and fungal diversity were greater in the native remnant prairies than in post-agricultural sites. Overall, both plant and fungal diversity increased with MAP and the communities in the arid and mesic parts of the gradient were distinct. Analyses of the linkages between plant and fungal communities (Mantel and Procrustes tests) identified strong correlations between the composition of the two. However, despite the strong correlations, regression models with plant richness, diversity, or composition (ordination axis scores) and land use as explanatory variables for fungal diversity and evenness did not improve the models compared to those with precipitation and land use (ΔAIC < 2), even though the explanatory power of some plant variables was greater than that of MAP as measured by R2. Indicator taxon analyses suggest that grass species are the primary taxa that differ in the plant communities. Similar analyses of the phyllosphere fungi indicated that many plant pathogens are disproportionately abundant either in the arid or mesic environments. Although decoupling the drivers of fungal communities and their composition - whether abiotic or host-dependent - remains a challenge, our study highlights the distinct community responses to precipitation and the tight tracking of the plant communities by their associated fungal symbionts.

12.
FEMS Microbiol Ecol ; 97(12)2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34849770

RESUMEN

Fire can impact terrestrial ecosystems by changing abiotic and biotic conditions. Short fire intervals maintain grasslands and communities adapted to frequent, low-severity fires. Shrub encroachment that follows longer fire intervals accumulates fuel and can increase fire severity. This patchily distributed biomass creates mosaics of burn severities in the landscape-pyrodiversity. Afforded by a scheduled burn of a watershed protected from fires for 27 years, we investigated effects of woody encroachment and burn severity on soil chemistry and soil-inhabiting bacteria and fungi. We compared soils before and after fire within the fire-protected, shrub-encroached watershed and soils in an adjacent, annually burned and non-encroached watershed. Organic matter and nutrients accumulated in the fire-protected watershed but responded less to woody encroachment within the encroached watershed. Bioavailable nitrogen and phosphorus and fungal and bacterial communities responded to high-severity burn regardless of encroachment. Low-severity fire effects on soil nutrients differed, increased bacterial but decreased fungal diversity and effects of woody encroachment within the encroached watershed were minimal. High-severity burns in the fire-protected watershed led to a novel soil system state distinct from non-encroached and encroached soil systems. We conclude that severe fires may open grassland restoration opportunities to manipulate soil chemistry and microbial communities in shrub-encroached habitats.


Asunto(s)
Incendios , Microbiota , Ecosistema , Pradera , Suelo , Madera
13.
mSphere ; 6(5): e0064621, 2021 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-34585960

RESUMEN

Mosquito larvae encounter diverse assemblages of bacteria (i.e., "microbiota") and fungi in the aquatic environments that they develop in. However, while a number of studies have addressed the diversity and function of microbiota in mosquito life history, relatively little is known about mosquito-fungus interactions outside several key fungal entomopathogens. In this study, we used high-throughput sequencing of internal transcribed spacer 2 (ITS2) metabarcode markers to provide the first simultaneous characterization of the fungal communities in field-collected Aedes albopictus larvae and their associated aquatic environments. Our results reveal unprecedented variation in fungal communities among adjacent but discrete larval breeding habitats. Our results also reveal a distinct fungal community assembly in the mosquito gut versus other tissues, with gut-associated fungal communities being most similar to those present in the environment where larvae feed. Altogether, our results identify the environment as the dominant factor shaping the fungal community associated with mosquito larvae, with no evidence of environmental filtering by the gut. These results also identify mosquito feeding behavior and fungal mode of nutrition as potential drivers of tissue-specific fungal community assembly after environmental acquisition. IMPORTANCE The Asian tiger mosquito, Aedes albopictus, is the dominant mosquito species in the United States and an important vector of arboviruses of major public health concern. One aspect of mosquito control to curb mosquito-borne diseases has been the use of biological control agents such as fungal entomopathogens. Recent studies also demonstrate the impact of mosquito-associated microbial communities on various mosquito traits, including vector competence. However, while much research attention has been dedicated to understanding the diversity and function of mosquito-associated bacterial communities, relatively little is known about mosquito-associated fungal communities. A better understanding of the factors that drive fungal community diversity and assembly in mosquitoes will be essential for future efforts to target mosquito-associated bacteria and fungi for mosquito and mosquito-borne disease control.


Asunto(s)
Aedes/microbiología , Aedes/fisiología , Hongos/fisiología , Aedes/crecimiento & desarrollo , Animales , Femenino , Tracto Gastrointestinal/microbiología , Tracto Gastrointestinal/fisiología , Secuenciación de Nucleótidos de Alto Rendimiento , Larva/crecimiento & desarrollo , Larva/microbiología , Larva/fisiología , Micobioma
14.
Environ Int ; 157: 106811, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34403882

RESUMEN

BACKGROUND: In modern urban environments children have a high incidence of inflammatory disorders, including allergies, asthma, and type1 diabetes. The underlying cause of these disorders, according to the biodiversity hypothesis, is an imbalance in immune regulation caused by a weak interaction with environmental microbes. In this 2-year study, we analyzed bacterial community shifts in the soil surface in day-care centers and commensal bacteria inhabiting the mouth, skin, and gut of children. We compared two different day-care environments: standard urban day-care centers and intervention day-care centers. Yards in the latter were amended with biodiverse forest floor vegetation and sod at the beginning of the study. RESULTS: Intervention caused a long-standing increase in the relative abundance of nonpathogenic environmental mycobacteria in the surface soils. Treatment-specific shifts became evident in the community composition of Gammaproteobacteria, Negativicutes, and Bacilli, which jointly accounted for almost 40 and 50% of the taxa on the intervention day-care children's skin and in saliva, respectively. In the year-one skin swabs, richness of Alpha-, Beta-, and Gammaproteobacteria was higher, and the relative abundance of potentially pathogenic bacteria, including Haemophilus parainfluenzae, Streptococcus sp., and Veillonella sp., was lower among children in intervention day-care centers compared with children in standard day-care centers. In the gut, the relative abundance of Clostridium sensu stricto decreased, particularly among the intervention children. CONCLUSIONS: This study shows that a 2-year biodiversity intervention shapes human commensal microbiota, including taxa that have been associated with immune regulation. Results indicate that intervention enriched commensal microbiota and suppressed the potentially pathogenic bacteria on the skin. We recommend future studies that expand intervention strategies to immune response and eventually the incidence of immune-mediated diseases.


Asunto(s)
Microbiota , Bacterias , Biodiversidad , Niño , Guarderías Infantiles , Humanos , Suelo
15.
Glob Chang Biol ; 27(17): 4139-4153, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34021965

RESUMEN

An increasingly urbanized world is one of the most prominent examples of global environmental change. Across the globe, urban parks are designed and managed in a similar way, resulting in visually pleasing expansions of lawn interspersed with individually planted trees of varying appearances and functional traits. These large urban greenspaces have the capacity to provide various ecosystem services, including those associated with soil physicochemical properties. Our aim was to explore whether soil properties in urban parks diverge underneath vegetation producing labile or recalcitrant litter, and whether the impact is affected by climatic zone (from a boreal to temperate to tropical city). We also compared these properties to those in (semi)natural forests outside the cities to assess the influence of urbanization on plant-trait effects. We showed that vegetation type affected percentage soil organic matter (OM), total carbon (C) and total nitrogen (N), but inconsistently across climatic zones. Plant-trait effects were particularly weak in old parks in the boreal and temperate zones, whereas in young parks in these zones, soils underneath the two tree types accumulated significantly more OM, C and N compared to lawns. Within climatic zones, anthropogenic drivers dominated natural ones, with consistently lower values of organic-matter-related soil properties under trees producing labile or recalcitrant litter in parks compared to forests. The dominating effect of urbanization is also reflected in its ability to homogenize soil properties in parks across the three cities, especially in lawn soils and soils under trees irrespective of functional trait. Our study demonstrates that soil functions that relate to carbon and nitrogen dynamics-even in old urban greenspaces where plant-soil interactions have a long history-clearly diverged from those in natural ecosystems, implying a long-lasting influence of anthropogenic drivers on soil ecosystem services.


Asunto(s)
Ecosistema , Suelo , Bosques , Árboles , Urbanización
16.
Microbiol Resour Announc ; 10(1)2021 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-33414283

RESUMEN

The novel fungal strain, Fusarium sp. strain DS 682, was isolated from the rhizosphere of the perennial grass, Bouteloua gracilis, at the Konza Prairie Biological Station in Kansas. This fungal strain is common across North American grasslands and is resilient to environmental fluctuations. The draft genome is estimated to be 97.2% complete.

17.
Bioscience ; 70(11): 1027-1035, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33273892

RESUMEN

Transmission of information has benefitted from a breathtaking level of innovation and change over the past 20 years; however, instructional methods within colleges and universities have been slow to change. In the article, we present a novel framework to structure conversations that encourage innovation, change, and improvement in our system of higher education, in general, and our system of biology education, specifically. In particular, we propose that a conceptual model based on evolutionary landscapes in which fitness is replaced by educational effectiveness would encourage educational improvement by helping to visualize the multidimensional nature of education and learning, acknowledge the complexity and dynamism of the educational landscape, encourage collaboration, and stimulate experimental thinking about how new approaches and methodology could take various fields associated with learning, to more universal fitness optima. The framework also would encourage development and implementation of new techniques and persistence through less efficient or effective valleys of death.

18.
Microbiol Resour Announc ; 9(32)2020 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-32763940

RESUMEN

To enable an in-depth survey of the metabolic potential of complex soil microbiomes, we performed ultra-deep metagenome sequencing, collecting >1 Tb of sequence data from three grassland soils representing different precipitation regimes.

19.
Front Microbiol ; 10: 2258, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31649627

RESUMEN

Gut microbiota can have important effects on host health, but explanatory factors and pathways that determine gut microbial composition can differ among host lineages. In mammals, host phylogeny is one of the main drivers of gut microbiota, a result of vertical transfer of microbiota during birth. In birds, it is less clear what the drivers might be, but both phylogeny and environmental factors may play a role. We investigated host and environmental factors that underlie variation in gut microbiota composition in eight species of migratory shorebirds. We characterized bacterial communities from 375 fecal samples collected from adults of eight shorebird species captured at a network of nine breeding sites in the Arctic and sub-Arctic ecoregions of North America, by sequencing the V4 region of the bacterial 16S ribosomal RNA gene. Firmicutes (55.4%), Proteobacteria (13.8%), Fusobacteria (10.2%), and Bacteroidetes (8.1%) dominated the gut microbiota of adult shorebirds. Breeding location was the main driver of variation in gut microbiota of breeding shorebirds (R 2 = 11.6%), followed by shorebird host species (R 2 = 1.8%), and sampling year (R 2 = 0.9%), but most variation remained unexplained. Site variation resulted from differences in the core bacterial taxa, whereas rare, low-abundance bacteria drove host species variation. Our study is the first to highlight a greater importance of local environment than phylogeny as a driver of gut microbiota composition in wild, migratory birds under natural conditions.

20.
mSystems ; 4(4)2019 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-31186334

RESUMEN

Climate change is causing shifts in precipitation patterns in the central grasslands of the United States, with largely unknown consequences on the collective physiological responses of the soil microbial community, i.e., the metaphenome. Here, we used an untargeted omics approach to determine the soil microbial community's metaphenomic response to soil moisture and to define specific metabolic signatures of the response. Specifically, we aimed to develop the technical approaches and metabolic mapping framework necessary for future systematic ecological studies. We collected soil from three locations at the Konza Long-Term Ecological Research (LTER) field station in Kansas, and the soils were incubated for 15 days under dry or wet conditions and compared to field-moist controls. The microbiome response to wetting or drying was determined by 16S rRNA amplicon sequencing, metatranscriptomics, and metabolomics, and the resulting shifts in taxa, gene expression, and metabolites were assessed. Soil drying resulted in significant shifts in both the composition and function of the soil microbiome. In contrast, there were few changes following wetting. The combined metabolic and metatranscriptomic data were used to generate reaction networks to determine the metaphenomic response to soil moisture transitions. Site location was a strong determinant of the response of the soil microbiome to moisture perturbations. However, some specific metabolic pathways changed consistently across sites, including an increase in pathways and metabolites for production of sugars and other osmolytes as a response to drying. Using this approach, we demonstrate that despite the high complexity of the soil habitat, it is possible to generate insight into the effect of environmental change on the soil microbiome and its physiology and functions, thus laying the groundwork for future, targeted studies.IMPORTANCE Climate change is predicted to result in increased drought extent and intensity in the highly productive, former tallgrass prairie region of the continental United States. These soils store large reserves of carbon. The decrease in soil moisture due to drought has largely unknown consequences on soil carbon cycling and other key biogeochemical cycles carried out by soil microbiomes. In this study, we found that soil drying had a significant impact on the structure and function of soil microbial communities, including shifts in expression of specific metabolic pathways, such as those leading toward production of osmoprotectant compounds. This study demonstrates the application of an untargeted multi-omics approach to decipher details of the soil microbial community's metaphenotypic response to environmental perturbations and should be applicable to studies of other complex microbial systems as well.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...