Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.240
Filtrar
1.
Infect Drug Resist ; 17: 2189-2198, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38835493

RESUMEN

Objective: In this paper, we analyzed the clinical data of patients with meningoencephalitis caused by Streptococcus intermedius to understand better the clinical characteristics of the disease and recommend auxiliary diagnostic mode as well as treatment experience. Methods: We reviewed the clinical data of two patients admitted to our department in 2019 with meningoencephalitis caused by S. intermedius. Results: Two female patients were examined, one of whom had a history of radiotherapy for nasopharyngeal carcinoma while the other had no underlying disease. These two patients were admitted with symptoms of meningoencephalitis. Cerebrospinal fluid examinations revealed elevated levels of leukocytes and protein. After treatment with meropenem, the condition improved for a brief time, but then worsened with a decline in mental status and limb movement. Blood and cerebrospinal fluid cultures demonstrated the absence of pathogenic bacteria, while genome sequencing of cerebrospinal fluids revealed the presence of S. intermedius. Cranial magnetic resonance imaging revealed multiple cerebral abscesses (CAs). After coadministration of linezolid as an anti-infective, clinical symptoms gradually improved, and the CAs shrank on follow-up imaging. The condition exhibited a pattern of improvement-deterioration-improvement. Conclusion: Meningoencephalitis caused by S. intermedius is complex and prone to fluctuation and formation of multiple CAs. The definitive clinical diagnosis of this disease can be aided by genome sequencing technology, and early clarification of the etiology combined with the use of potent antibiotics is effective.

2.
Front Microbiol ; 15: 1363158, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38846573

RESUMEN

A total of 1,348 endophytic fungal strains were isolated from Ferula ovina, F. galbaniflua, and F. persica. They included Eurotiales (16 species), Pleosporales (11 species), Botryosphaeriales (1 species), Cladosporiales (2 species), Helotiales (6 species), Hypocreales (31 species), Sordariales (7 species), Glomerellales (2 species), and Polyporales (1 species). F. ovina had the richest species composition of endophytic fungi, and the endophytic fungi were most abundant in their roots compared to shoots. Chao, Margalef, Shannon, Simpson, Berger-Parker, Menhinick, and Camargo indices showed that F. ovina roots had the most endophytic fungal species. The frequency distribution of fungal species isolated from Ferula spp. fell into the log-series model, and F. ovina roots had the highest Fisher alpha. The dominance indices showed that there are no dominant species in the endophytic fungal community isolated from Ferula spp., indicating community stability. Evenness values were 0.69, 0.90, 0.94, and 0.57 for endophytic fungi isolated from F. ovina roots, F. ovina shoots, F. galbaniflua roots, and F. persica roots, respectively, indicating a species distribution that tends toward evenness. The fungal species community isolated from each of F. ovina roots, F. ovina shoots, F. galbaniflua roots, and F. persica roots was a diverse species group originating from a homogeneous habitat. Their distribution followed a log-normal distribution, suggesting that the interactions of numerous independent environmental factors multiplicatively control species abundances. Principal component analysis showed that the highest species diversity and dominance were observed in the endophytic fungal community isolated from F. ovina and F. persica roots, respectively.

3.
Nat Commun ; 15(1): 4947, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38858350

RESUMEN

The potential brain mechanism underlying resilience to socially transferred allodynia remains unknown. Here, we utilize a well-established socially transferred allodynia paradigm to segregate male mice into pain-susceptible and pain-resilient subgroups. Brain screening results show that ventral tegmental area glutamatergic neurons are selectively activated in pain-resilient mice as compared to control and pain-susceptible mice. Chemogenetic manipulations demonstrate that activation and inhibition of ventral tegmental area glutamatergic neurons bi-directionally regulate resilience to socially transferred allodynia. Moreover, ventral tegmental area glutamatergic neurons that project specifically to the nucleus accumbens shell and lateral habenula regulate the development and maintenance of the pain-resilient phenotype, respectively. Together, we establish an approach to explore individual variations in pain response and identify ventral tegmental area glutamatergic neurons and related downstream circuits as critical targets for resilience to socially transferred allodynia and the development of conceptually innovative analgesics.


Asunto(s)
Ácido Glutámico , Hiperalgesia , Neuronas , Núcleo Accumbens , Área Tegmental Ventral , Animales , Masculino , Hiperalgesia/fisiopatología , Área Tegmental Ventral/fisiopatología , Ratones , Ácido Glutámico/metabolismo , Núcleo Accumbens/fisiopatología , Neuronas/metabolismo , Mesencéfalo , Ratones Endogámicos C57BL , Resiliencia Psicológica , Habénula , Modelos Animales de Enfermedad
4.
Biochem Biophys Res Commun ; 716: 150038, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38704891

RESUMEN

Hyperuricemia (HUA) is caused by increased synthesis and/or insufficient excretion of uric acid (UA). Long-lasting HUA may lead to a number of diseases including gout and kidney injury. Harpagoside (Harp) is a bioactive compound with potent anti-inflammatory activity from the roots of Scrophularia ningpoensis. Nevertheless, its potential effect on HUA was not reported. The anti-HUA and nephroprotective effects of Harp on HUA mice were assessed by biochemical and histological analysis. The proteins responsible for UA production and transportation were investigated to figure out its anti-HUA mechanism, while proteins related to NF-κB/NLRP3 pathway were evaluated to reveal its nephroprotective mechanism. The safety was evaluated by testing its effect on body weight and organ coefficients. The results showed that Harp significantly reduced the SUA level and protected the kidney against HUA-induced injury but had no negative effect on safety. Mechanistically, Harp significantly reduced UA production by acting as inhibitors of xanthine oxidase (XOD) and adenosine deaminase (ADA) and decreased UA excretion by acting as activators of ABCG2, OAT1 and inhibitors of GLUT9 and URAT1. Moreover, Harp markedly reduced infiltration of inflammatory cells and down-regulated expressions of TNF-α, NF-κB, NLRP3 and IL-1ß in the kidney. Harp was a promising anti-HUA agent.


Asunto(s)
Glicósidos , Hiperuricemia , Proteína con Dominio Pirina 3 de la Familia NLR , Piranos , Ácido Úrico , Animales , Hiperuricemia/tratamiento farmacológico , Hiperuricemia/metabolismo , Ácido Úrico/sangre , Masculino , Glicósidos/farmacología , Glicósidos/uso terapéutico , Piranos/farmacología , Piranos/uso terapéutico , Ratones , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Riñón/efectos de los fármacos , Riñón/patología , Riñón/metabolismo , FN-kappa B/metabolismo , Ratones Endogámicos C57BL
6.
Int J Biol Macromol ; 269(Pt 2): 132168, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38729496

RESUMEN

Ferula spp. are plants that produce oleo-gum-resins (OGRs), which are plant exudates with various colors. These OGRs have various industrial applications in pharmacology, perfumery, and food. The main constituents of these OGRs are terpenoids, a diverse group of organic compounds with different structures and functions. The biosynthesis of OGRs in Ferula spp., particularly galbanum, holds considerable economic and ecological importance. However, the molecular and genetic underpinnings of this biosynthetic pathway remain largely enigmatic. This review provides an overview of the current state of knowledge on the biosynthesis of OGRs in Ferula spp., highlighting the major enzymes, genes, and pathways involved in the synthesis of different terpenoid classes, such as monoterpenes, sesquiterpenes, and triterpenes. It also examines the potential of using omics techniques, such as transcriptomics and metabolomics, and genome editing tools, such as CRISPR/Cas, to increase the yield and quality of Ferula OGRs, as well as to create novel bioactive compounds with enhanced properties. Moreover, this review addresses the current challenges and opportunities of applying gene editing in Ferula spp., and suggests some directions for future research and development.


Asunto(s)
Ferula , Ferula/química , Gomas de Plantas/química , Vías Biosintéticas/genética , Resinas de Plantas/química , Terpenos/metabolismo , Terpenos/química , Edición Génica
7.
Dalton Trans ; 53(18): 7669-7676, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38646797

RESUMEN

A dinuclear Fe(II) spin crossover (SCO) complex with the formula [Fe2L5(NCS)4]·2DMF·2H2O (1) was synthesised from 1-naphthylimino-1,2,4-triazole (L). Complex 1 exhibits an incomplete thermally induced spin transition with a transition temperature T1/2 of 95 K and a thermally trapped metastable high-spin state at low temperatures. Furthermore, it undergoes a reversible light-induced spin crossover by alternate irradiation with 532 and 808 nm lasers.

8.
Sci Total Environ ; 929: 172648, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38649036

RESUMEN

Growing attention is being directed towards exploring the potential harmful effects of microplastic (MP) particles on human health. Previous reports on human exposure to MPs have primarily focused on inhalation, ingestion, transdermal routes, and, potentially, transplacental transfer. The intravenous transfer of MP particles in routine healthcare settings has received limited exploration in existing literature. Standard hospital IV system set up with 0.9 % NaCl in a laminar flow hood with MP contamination precautions. Various volumes of 0.9 % NaCl passed through the system, some with a volumetric pump. Fluid filtered with Anodisc filters washed with isopropyl alcohol. The IV cannula was immersed in Mili-Q water for 72 h to simulate vein conditions. Subsequently, the water was filtered and washed. Optical photothermal infrared (O-PTIR) microspectroscopy is used to examine filters for MP particles. All filters examined from the IV infusion system contained MP particles, including MPs from the polymer materials used in the manufacture of the IV delivery systems (polydimethylsiloxane, polypropylene, polystyrene, and polyvinyl chloride) and MP particles arising from plastic resin additives (epoxy resin, polyamide resin, and polysiloxane-containing MPs). The geometric mean from the extrapolated result data indicated that approximately 0.90 MP particles per mL of 0.9 % NaCl solution can be administered through a conventional IV infusion system in the absence of a volumetric pump. However, with the implementation of a pump, this value may increase to 1.57 particles per mL. Notably, over 72 h, a single cannula was found to release approximately 558 MP particles including polydimethylsiloxane, polysiloxane-containing MPs, polyamide resin, and epoxy resin. Routine IV infusion systems release microplastics. MP particles are also released around IV cannulas, suggesting transfer into the circulatory system during standard IV procedures.


Asunto(s)
Microplásticos , Microplásticos/análisis , Espectrofotometría Infrarroja , Monitoreo del Ambiente/métodos , Infusiones Intravenosas , Humanos , Plásticos/análisis
9.
Sci China Life Sci ; 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38565741

RESUMEN

Endocrine therapy that blocks estrogen signaling is the most effective treatment for patients with estrogen receptor positive (ER+) breast cancer. However, the efficacy of agents such as tamoxifen (Tam) is often compromised by the development of resistance. Here we report that cytokines-activated nuclear IKKα confers Tam resistance to ER+ breast cancer by inducing the expression of FAT10, and that the expression of FAT10 and nuclear IKKα in primary ER+ human breast cancer was correlated with lymphotoxin ß (LTB) expression and significantly associated with relapse and metastasis in patients treated with adjuvant mono-Tam. IKKα activation or enforced FAT10 expression promotes Tam-resistance while loss of IKKα or FAT10 augments Tam sensitivity. The induction of FAT10 by IKKα is mediated by the transcription factor Pax5, and coordinated via an IKKα-p53-miR-23a circuit in which activation of IKKα attenuates p53-directed repression of FAT10. Thus, our findings establish IKKα-to-FAT10 pathway as a new therapeutic target for the treatment of Tam-resistant ER+ breast cancer.

10.
Curr Med Sci ; 44(2): 333-345, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38622424

RESUMEN

OBJECTIVE: Peritoneal fibrosis (PF) is the main cause of declining efficiency and ultrafiltration failure of the peritoneum, which restricts the long-term application of peritoneal dialysis (PD). This study aimed to investigate the therapeutic effects and mechanisms of bone marrow mesenchymal stem cells-derived exosomes (BMSC-Exos) on PF in response to PD. METHODS: Small RNA sequencing analysis of BMSC-Exos was performed by second-generation sequencing. C57BL/6J mice were infused with 4.25% glucose-based peritoneal dialysis fluid (PDF) for 6 consecutive weeks to establish a PF model. A total of 36 mice were randomly divided into 6 groups: control group, 1.5% PDF group, 2.5% PDF group, 4.25% PDF group, BMSC-Exos treatment group, and BMSC-Exos+TP53 treatment group. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) was performed to measure the expression level of miR-27a-3p in BMSC-Exos and peritoneum of mice treated with different concentrations of PDF. HE and Masson staining were performed to evaluate the extent of PF. The therapeutic potential of BMSC-Exos for PF was examined through pathological examination, RT-qPCR, Western blotting, and peritoneal function analyses. Epithelial-mesenchymal transition (EMT) of HMrSV5 was induced with 4.25% PDF. Cells were divided into control group, 4.25% PDF group, BMSC-Exos treatment group, and BMSC-Exos+TP53 treatment group. Cell Counting Kit-8 assay was used to measure cell viability, and transwell migration assay was used to verify the capacity of BMSC-Exos to inhibit EMT in HMrSV5 cells. RESULTS: Small RNA sequencing analysis showed that miR-27a-3p was highly expressed in BMSC-derived exosomes compared to BMSCs. The RT-qPCR results showed that the expression of miR-27a-3p was upregulated in BMSC-Exos, but decreased in PD mice. We found that PF was glucose concentration-dependently enhanced in the peritoneum of the PD mice. Compared with the control mice, the PD mice showed high solute transport and decreased ultrafiltration volume as well as an obvious fibroproliferative response, with markedly increased peritoneal thickness and higher expression of α-SMA, collagen-I, fibronectin, and ECM1. The mice with PD showed decreased miR-27a-3p. Peritoneal structural and functional damage was significantly attenuated after BMSC-Exos treatment, while PF and mesothelial damage were significantly ameliorated. Additionally, markers of fibrosis (α-SMA, collagen-I, fibronectin, ECM1) and profibrotic cytokines (TGF-ß1, PDGF) were downregulated at the mRNA and protein levels after BMSC-Exos treatment. In HMrSV5 cells, BMSC-Exos reversed the decrease in cell viability and the increase in cell migratory capacity caused by high-glucose PDF. Western blotting and RT-qPCR analysis revealed that BMSC-Exos treatment resulted in increased expression of E-cadherin (epithelial marker) and decreased expression of α-SMA, Snail, and vimentin (mesenchymal markers) compared to those of the 4.25% PDF-treated cells. Importantly, a dual-luciferase reporter assay showed that TP53 was a target gene of miR-27a-3p. TP53 overexpression significantly reversed the decreases in PF and EMT progression induced by BMSC-Exos. CONCLUSION: The present results demonstrate that BMSC-Exos showed an obvious protective effect on PD-related PF and suggest that BMSC-derived exosomal miR-27a-3p may exert its inhibitory effect on PF and EMT progression by targeting TP53.


Asunto(s)
Exosomas , MicroARNs , Diálisis Peritoneal , Fibrosis Peritoneal , Ratones , Animales , Fibrosis Peritoneal/genética , Fibrosis Peritoneal/terapia , Fibronectinas , Exosomas/metabolismo , Ratones Endogámicos C57BL , Diálisis Peritoneal/efectos adversos , MicroARNs/genética , MicroARNs/metabolismo , Glucosa , Colágeno
11.
JAMA Netw Open ; 7(4): e246589, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38635271

RESUMEN

Importance: Perioperative anxiety is prevalent among patients undergoing surgical treatment of cancer and often influences their prognosis. Transcranial direct current stimulation (tDCS) has shown potential in the treatment of various anxiety-related disorders, but data on the impact of tDCS on perioperative anxiety are limited. Objective: To evaluate the effect of tDCS in reducing perioperative anxiety among patients undergoing laparoscopic colorectal cancer (CRC) resection. Design, Setting, And Participants: This randomized clinical trial was conducted from March to August 2023 at the Affiliated Hospital of Xuzhou Medical University. Patients aged 18 years or older undergoing elective laparoscopic radical resection for CRC were randomly assigned to either the active tDCS group or the sham tDCS group. Intention-to-treat data analysis was performed in September 2023. Interventions: Patients were randomly assigned to receive 2 sessions of either active tDCS or sham tDCS over the left dorsolateral prefrontal cortex on the afternoon of the day before the operation and in the morning of the day of operation. Main Outcomes and Measures: The main outcome was the incidence of perioperative anxiety from the day of the operation up to 3 days after the procedure, as measured using the Hospital Anxiety and Depression Scale-Anxiety (HADS-A) subscale (range: 0-21, with higher scores indicating more anxiety). Secondary outcomes included postoperative delirium (assessed by the Confusion Assessment Method or Confusion Assessment Method intensive care unit scale); pain (assessed by the 10-point Numeric Rating Scale [NRS], with scores ranging from 0 [no pain] to 10 [worst pain]); frailty (assessed by the Fatigue, Resistance, Ambulation, Illness and Loss of Weight [FRAIL] Index, with scores ranging from 0 [most robust] to 5 [most frail]; and sleep quality (assessed by the Pittsburgh Sleep Quality Index [PSQI], with scores ranging from 0 to 21 and higher scores indicating worse sleep quality) after the 2 sessions of the tDCS intervention. Results: A total of 196 patients (mean [SD] age, 63.5 [11.0] years; 124 [63.3%] men) were recruited and randomly assigned to the active tDCS group (98 patients) or the sham tDCS group (98 patients). After the second tDCS intervention on the day of the operation, the incidence of perioperative anxiety was 38.8% in the active tDCS group and 70.4% in the sham tDCS group (relative risk, 0.55 [95% CI, 0.42-0.73]; P < .001). Patients in the active tDCS group vs the sham tDCS group were less likely to have postoperative delirium (8.2% vs 25.5%) and, at 3 days after the operation, had lower median (IQR) pain scores (NRS, 1.0 [1.0-1.0] vs 2.0 [2.0-2.0]), better median (IQR) sleep quality scores (PSQI, 10.5 [10.0-11.0] vs 12.0 [11.0-13.0]), and lower median (IQR) FRAIL Index (2.0 [1.0-2.0] vs 2.0 [2.0-3.0]). Conclusions and Relevance: Findings of this randomized clinical trial indicate that administration of 2 preoperative sessions of tDCS was associated with a decreased incidence of perioperative anxiety in patients undergoing elective CRC resection. Active tDCS was also associated with better anxiety scores, pain levels, and sleep quality as well as reduced postoperative delirium and frailty. The findings suggest that tDCS may be a novel strategy for improving perioperative anxiety in patients undergoing CRC resection. Trial Registration: Chinese Clinical Trial Register Identifier: ChiCTR2300068859.


Asunto(s)
Neoplasias Colorrectales , Delirio del Despertar , Fragilidad , Laparoscopía , Estimulación Transcraneal de Corriente Directa , Femenino , Humanos , Masculino , Persona de Mediana Edad , Ansiedad , Fatiga , Dolor , Anciano
12.
Proc Natl Acad Sci U S A ; 121(17): e2314353121, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38635634

RESUMEN

Auxin regulates plant growth and development through downstream signaling pathways, including the best-known SCFTIR1/AFB-Aux/IAA-ARF pathway and several other less characterized "noncanonical" pathways. Recently, one SCFTIR1/AFB-independent noncanonical pathway, mediated by Transmembrane Kinase 1 (TMK1), was discovered through the analyses of its functions in Arabidopsis apical hook development. Asymmetric accumulation of auxin on the concave side of the apical hook triggers DAR1-catalyzed release of the C-terminal of TMK1, which migrates into the nucleus, where it phosphorylates and stabilizes IAA32/34 to inhibit cell elongation, which is essential for full apical hook formation. However, the molecular factors mediating IAA32/34 degradation have not been identified. Here, we show that proteins in the CYTOKININ INDUCED ROOT WAVING 1 (CKRW1)/WAVY GROWTH 3 (WAV3) subfamily act as E3 ubiquitin ligases to target IAA32/34 for ubiquitination and degradation, which is inhibited by TMK1c-mediated phosphorylation. This antagonistic interaction between TMK1c and CKRW1/WAV3 subfamily E3 ubiquitin ligases regulates IAA32/34 levels to control differential cell elongation along opposite sides of the apical hook.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas F-Box , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Transducción de Señal , Ubiquitinas/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas F-Box/genética , Proteínas F-Box/metabolismo
13.
Insect Mol Biol ; 2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38613398

RESUMEN

The silkworm (Bombyx mori) is an important model lepidopteran insect and can be used to identify pesticide resistance-related genes of great significance for biological control of pests. Uridine diphosphate glucosyltransferases (UGTs), found in all organisms, are the main secondary enzymes involved in the metabolism of heterologous substances. However, it remains uncertain if silkworm resistance to fenpropathrin involves UGT. This study observes significant variations in BmUGT expression among B. mori strains with variable fenpropathrin resistance post-feeding, indicating BmUGT's role in fenpropathrin detoxification. Knockdown of BmUGT with RNA interference and overexpression of BmUGT significantly decreased and increased BmN cell activity, respectively, indicating that BmUGT plays an important role in the resistance of silkworms to fenpropathrin. In addition, fenpropathrin residues were significantly reduced after incubation for 12 h with different concentrations of a recombinant BmUGT fusion protein. Finally, we verified the conservation of UGT to detoxify fenpropathrin in Spodoptera exigua: Its resistance to fenpropathrin decreased significantly after knocking down SeUGT. In a word, UGT plays an important role in silkworm resistance to fenpropathrin by directly degrading the compound, a function seen across other insects. The results of this study are of great significance for breeding silkworm varieties with high resistance and for biological control of pests.

14.
Acad Radiol ; 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38658211

RESUMEN

RATIONALE AND OBJECTIVES: The aim of this study was to develop a deep learning radiomics nomogram (DLRN) based on B-mode ultrasound (BMUS) and color doppler flow imaging (CDFI) images for preoperative assessment of lymphovascular invasion (LVI) status in invasive breast cancer (IBC). MATERIALS AND METHODS: In this multicenter, retrospective study, 832 pathologically confirmed IBC patients were recruited from eight hospitals. The samples were divided into training, internal test, and external test sets. Deep learning and handcrafted radiomics features reflecting tumor phenotypes on BMUS and CDFI images were extracted. The BMUS score and CDFI score were calculated after radiomics feature selection. Subsequently, a DLRN was developed based on the scores and independent clinic-ultrasonic risk variables. The performance of the DLRN was evaluated for calibration, discrimination, and clinical usefulness. RESULTS: The DLRN predicted the LVI with accuracy, achieving an area under the receiver operating characteristic curve of 0.93 (95% CI 0.90-0.95), 0.91 (95% CI 0.87-0.95), and 0.91 (95% CI 0.86-0.94) in the training, internal test, and external test sets, respectively, with good calibration. The DLRN demonstrated superior performance compared to the clinical model and single scores across all three sets (p < 0.05). Decision curve analysis and clinical impact curve confirmed the clinical utility of the model. Furthermore, significant enhancements in net reclassification improvement (NRI) and integrated discrimination improvement (IDI) indicated that the two scores could serve as highly valuable biomarkers for assessing LVI. CONCLUSION: The DLRN exhibited strong predictive value for LVI in IBC, providing valuable information for individualized treatment decisions.

15.
Nat Chem ; 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38658798

RESUMEN

Natural gap junctions are a type of channel protein responsible for intercellular signalling and mass communication. However, the scope of applications for these proteins is limited as they cannot be prepared at a large scale and are unable to spontaneously insert into cell membranes in vitro. The construction of artificial gap junctions may provide an alternative strategy for preparing analogues of the natural proteins and bottom-up building blocks necessary for the synthesis of artificial cells. Here we show the construction of artificial gap junction channels from unimolecular tubular molecules consisting of alternately arranged positively and negatively charged pillar[5]arene motifs. These molecules feature a hydrophobic-hydrophilic-hydrophobic triblock structure that allows them to efficiently insert into two adjacent plasma membranes and stretch across the gap between the two membranes to form gap junctions. Similar to natural gap junction channels, the synthetic channels could mediate intercellular signal coupling and reactive oxygen species transmission, leading to cellular activity.

16.
Fitoterapia ; 176: 105976, 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38685511

RESUMEN

Phytochemical research on an extract of Notopterygium incisum yielded fifteen compounds (1-15), including four previously undescribed compounds (10-13). The structures of the unreported compounds were elucidated by spectroscopic and spectrometric data analysis such as 1D and 2D NMR, IR and HR-ESI-MS. Compounds 1-5 and 10-14 were isolated from N. incisum for the first time. 7S⁎,8R⁎-Phenethyl-(7-methoxy-8-isoeugenol)-ferulate (10), 7S⁎,8R⁎-p-hydroxyphenethyl-(7-methoxy-8-isoeugenol)-ferulate (11), 7S⁎,8R⁎-benzyl-(7-methoxy-8-isoeugenol)-ferulate (12) and p-hydroxyphenethyl-(4-benzoy-3-methoxy)-cinnamate (13) are the undescribed ferulic acid derivatives. Additionly, the anti-neuroinflammatory effects of compounds were evaluated in lipopolysaccharide (LPS)-induced BV2 cells. The pharmacological results showed that 6ß,10ß-epoxy-4α-hydroxy-guaiane (6), teuclatriol (7) and 7S⁎,8R⁎-p-hydroxyphenethyl-(7-methoxy-8-isoeugenol)-ferulate (11) inhibited the production and expression of nitric oxide (NO) in the LPS-induced BV2 cells in a concentration-dependent manner. Acorusnol (4), teucladiol (9), 7S⁎,8R⁎-benzyl-(7-methoxy-8-isoeugenol)-ferulate (12) and p-hydroxyphenethyl-(4-benzoy-3-methoxy)-cinnamate (13) only inhibited the release of NO at concentration of 20 µM. Moreover, 7S⁎,8R⁎-p-hydroxyphenethyl-(7-methoxy-8-isoeugenol)-ferulate (11) reduced the level of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in LPS-stimulated BV2 cells. The results demonstrated 7S⁎,8R⁎-p-hydroxyphenethyl-(7-methoxy-8-isoeugenol)-ferulate (11) could be a potential anti-neuroinflammatory agent and is worthy of further study.

17.
World J Gastrointest Oncol ; 16(3): 659-669, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38577461

RESUMEN

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) has a poor prognosis, with a 5-year survival rate of less than 10%, owing to its late-stage diagnosis. Early detection of pancreatic cancer (PC) can significantly increase survival rates. AIM: To identify the serum biomarker signatures associated with early-stage PDAC by serum N-glycan analysis. METHODS: An extensive patient cohort was used to determine a biomarker signature, including patients with PDAC that was well-defined at an early stage (stages I and II). The biomarker signature was derived from a case-control study using a case-cohort design consisting of 29 patients with stage I, 22 with stage II, 4 with stage III, 16 with stage IV PDAC, and 88 controls. We used multiparametric analysis to identify early-stage PDAC N-glycan signatures and developed an N-glycan signature-based diagnosis model called the "Glyco-model". RESULTS: The biomarker signature was created to discriminate samples derived from patients with PC from those of controls, with a receiver operating characteristic area under the curve of 0.86. In addition, the biomarker signature combined with cancer antigen 19-9 could discriminate patients with PDAC from controls, with a receiver operating characteristic area under the curve of 0.919. Glyco-model demonstrated favorable diagnostic performance in all stages of PC. The diagnostic sensitivity for stage I PDAC was 89.66%. CONCLUSION: In a prospective validation study, this serum biomarker signature may offer a viable method for detecting early-stage PDAC.

18.
J Exp Bot ; 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38486360

RESUMEN

Self-incompatibility (SI) is a crucial mechanism that prevents self-fertilization and inbreeding in flowering plants. Citrus exhibits SI regulated by a polymorphic S-locus containing an S-RNase gene and multiple S-locus F-box (SLF) genes. It has been documented that S-RNase functions as the pistil S determinant, but there is no direct evidence that the SLFs closely linked with S-RNase function as pollen S determinants in Citrus. This study assembled the genomes of two pummelo (Citrus grandis) plants and obtained three novel complete and well-annotated S-haplotypes and isolated 36 SLF or SLF-like alleles on the S-loci. Phylogenetic analysis of 138 SLFs revealed that the SLFs were classified into 12 types, including six types with divergent or missing alleles. Furthermore, transformation experiments verified that the conserved S6-SLF7a protein can lead the transition of SI to self-compatibility (SC) by recognizing non-self S8-RNase in 'Mini-Citrus' plants (S7S8 and S8S29, Fortunella hindsii), a model plant for citrus gene function studies. In vitro assays demonstrated interactions between SLFs of different S haplotypes and the Skp1-Cullin1-F-box subunit CgSSK1 protein. This study provides direct evidence that SLF controls the pollen function in Citrus, demonstrating its role in the 'non-self-recognition' SI system.

19.
Mol Psychiatry ; 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38454083

RESUMEN

Both peripheral and central corticotropin-releasing factor (CRF) systems have been implicated in regulating pain sensation. However, compared with the peripheral, the mechanisms underlying central CRF system in pain modulation have not yet been elucidated, especially at the neural circuit level. The corticoaccumbal circuit, a structure rich in CRF receptors and CRF-positive neurons, plays an important role in behavioral responses to stressors including nociceptive stimuli. The present study was designed to investigate whether and how CRF signaling in this circuit regulated pain sensation under physiological and pathological pain conditions. Our studies employed the viral tracing and circuit-, and cell-specific electrophysiological methods to label the CRF-containing circuit from the medial prefrontal cortex to the nucleus accumbens shell (mPFCCRF-NAcS) and record its neuronal propriety. Combining optogenetic and chemogenetic manipulation, neuropharmacological methods, and behavioral tests, we were able to precisely manipulate this circuit and depict its role in regulation of pain sensation. The current study found that the CRF signaling in the NAc shell (NAcS), but not NAc core, was necessary and sufficient for the regulation of pain sensation under physiological and pathological pain conditions. This process was involved in the CRF-mediated enhancement of excitatory synaptic transmission in the NAcS. Furthermore, we demonstrated that the mPFCCRF neurons monosynaptically connected with the NAcS neurons. Chronic pain increased the protein level of CRF in NAcS, and then maintained the persistent NAcS neuronal hyperactivity through enhancement of this monosynaptic excitatory connection, and thus sustained chronic pain behavior. These findings reveal a novel cell- and circuit-based mechanistic link between chronic pain and the mPFCCRF → NAcS circuit and provide a potential new therapeutic target for chronic pain.

20.
Compr Rev Food Sci Food Saf ; 23(2): e13315, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38462817

RESUMEN

The widespread occurrence of microplastics (MPs) in the food chain has gained substantial recognition as a pressing concern, highlighting the inevitability of human exposure through ingestion of foodborne MPs, coupled with the release of MPs from plastic packaging. However, there are notable disparities in the reported numbers of MPs in foods and beverages, warranting a thorough investigation into the factors contributing to these discrepancies. Table salt is one of the major sources of MPs, and there was an approximately hundred-fold difference between the reviewed studies that reported the highest and lowest number of MPs. In addition, more noticeable discrepancies were discovered between studies on MPs released from teabags. One study reported that approximately 15 billion MPs were released into a cup of tea from a single teabag, whereas another research paper found only approximately 106.3 ± 14.6 MP/teabag after brewing. This comprehensive review focuses on the inconsistencies observed across studies examining MPs, shedding light on the plausible factors underlying these variations. Furthermore, the review outlines areas in analytical procedures that require enhancement and offers recommendations to promote accuracy and standardization in future research efforts, such as employing analytical methods capable of confirming the presence of MPs, using appropriate filter sizes, considering representative sample sizes when extrapolation is involved, and so on. By pinpointing the detection processes leading to the inconsistent results observed in MP studies, this comparative analysis will contribute to the development of reliable analytic methods for understanding the extent of microplastic contamination in the human food chain.


Asunto(s)
Microplásticos , Plásticos , Humanos , Alimentos , Bebidas , Cloruro de Sodio Dietético
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA