Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cell Metab ; 33(9): 1777-1792.e8, 2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34375613

RESUMEN

Cancer cells are metabolically similar to their corresponding normal tissues. Differences between cancers and normal tissues may reflect reprogramming during transformation or maintenance of the metabolism of the specific normal cell type that originated the cancer. Here, we compare glucose metabolism in hematopoiesis and leukemia. Thymus T cell progenitors were glucose avid and oxidized more glucose in the tricarboxylic acid cycle through pyruvate dehydrogenase (PDH) as compared with other hematopoietic cells. PDH deletion decreased double-positive T cell progenitor cells but had no effect on hematopoietic stem cells, myeloid progenitors, or other hematopoietic cells. PDH deletion blocked the development of Pten-deficient T cell leukemia, but not the development of a Pten-deficient myeloid neoplasm. Therefore, the requirement for PDH in leukemia reflected the metabolism of the normal cell of origin independently of the driver genetic lesion. PDH was required to prevent pyruvate accumulation and maintain glutathione levels and redox homeostasis.


Asunto(s)
Leucemia , Ácido Pirúvico , Linaje de la Célula , Ciclo del Ácido Cítrico , Humanos , Oxidorreductasas/metabolismo , Complejo Piruvato Deshidrogenasa/metabolismo
2.
Nat Cancer ; 1(5): 533-545, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32984844

RESUMEN

Cancer cells express high levels of PD-L1, a ligand of the PD-1 receptor on T cells, allowing tumors to suppress T cell activity. Clinical trials utilizing antibodies that disrupt the PD-1/PD-L1 checkpoint have yielded remarkable results, with anti-PD-1 immunotherapy approved as first-line therapy for lung cancer patients. We used CRISPR-based screening to identify regulators of PD-L1 in human lung cancer cells, revealing potent induction of PD-L1 upon disruption of heme biosynthesis. Impairment of heme production activates the integrated stress response (ISR), allowing bypass of inhibitory upstream open reading frames in the PD-L1 5' UTR, resulting in enhanced PD-L1 translation and suppression of anti-tumor immunity. We demonstrated that ISR-dependent PD-L1 translation requires the translation initiation factor eIF5B. eIF5B overexpression, which is frequent in lung adenocarcinomas and associated with poor prognosis, is sufficient to induce PD-L1. These findings illuminate mechanisms of immune checkpoint activation and identify targets for therapeutic intervention.


Asunto(s)
Antígeno B7-H1 , Factores Eucarióticos de Iniciación , Neoplasias Pulmonares , Antígeno B7-H1/genética , Factores Eucarióticos de Iniciación/genética , Hemo/biosíntesis , Humanos , Neoplasias Pulmonares/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...