Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
NPJ Precis Oncol ; 8(1): 170, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39090283

RESUMEN

Discovery and verification of diagnostic or therapeutic biomarkers for biliary tract cancer (BTC) is challenging owing to the low prevalence of the disease. Here, we identified and investigated the clinical impact of a fusion gene, Pumilio1-tumor necrosis factor receptor-associated factor 3 (PUM1-TRAF3), caused by 1;14 chromosomal translocation in BTC. PUM1-TRAF3 was initially identified in the RNA-sequencing of five BTC surgical tissues and confirmed by fluorescence in situ hybridization. Expression of the fusion gene was validated in an expanded cohort (5/55, 9.1%). Establishment and molecular assessment of PUM1-TRAF3 expressing BTC cells revealed that PUM1-TRAF3 activates non-canonical NF-κB signaling via NF-κB-inducing kinase (NIK). Abnormal TRAF3 activity, driven by competitive binding of PUM1-TRAF3 and TRAF3 to NIK, led to NIK rescue followed by P52/RelB nuclear translocation, all of which were reverted by an NIK inhibitor. The elevated expression of NIK and activated NF-κB signaling was observed in the PUM1-TRAF3-expressing regions of patient tissues. Expression of the PUM1-TRAF3 fusion was significantly correlated with strong NIK expression, which is associated with a poorer prognosis for patients with BTC. Overall, our study identifies a new fusion gene, PUM1-TRAF3, that activates NIK and non-canonical NF-κB signaling, which may be beneficial for developing precise treatment strategies for BTC.

2.
Transplant Cell Ther ; 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38972509

RESUMEN

For successful engraftment of donor hematopoietic stem cells (HSC), conditioning with chemotherapy and/or radiation prior to hematopoietic cell transplantation (HCT) has been required to open marrow niche space and minimize the risk of immune rejection. Briquilimab, a humanized IgG1 monoclonal antibody that blocks the interaction between the c-Kit receptor and stem cell factor on various C-Kit expressing tissues including HSC, is a potential nonmyeloablative conditioning agent in clinical development for patients with severe combined immunodeficiency (SCID), myelodysplastic syndromes (MDS), and acute myeloid leukemia (AML). This study aimed to characterize pharmacokinetics (PK) and develop a population PK model of briquilimab after single intravenous infusions of 4 different doses in patients with SCID, MDS, or AML receiving HCT. The PK data was collected from 2 different studies: JAS-BMT-CP-001 and JSP-CP-003. JAS-BMT-CP-001 is a phase 1/2 open-label study of briquilimab as a conditioning agent prior to allogenic HCT in SCID patients. The participants received single intravenous infusions of 0.1, 0.3, 0.6, or 1.0 mg/kg. JSP-CP-003 was a phase 1a/b open-label study of briquilimab in combination with a standard conditioning regimen of low dose total body irradiation and fludarabine in MDS or AML subjects undergoing HCT. The participants received a single intravenous dose of 0.6 mg/kg briquilimab. In both studies, briquilimab PK samples were obtained at pre-treatment, 5 minutes post-end of infusion, 4- and 24-hours post-start of infusion, any time between 2 days and 30 days postinfusion, and on the day of HCT prior to donor cell infusion.The population PK model was developed using the PK data from these 2 clinical studies, and the effect of participants' baseline characteristics on the briquilimab PK was evaluated. PK simulations were performed using the developed PK model to calculate the time to reach target concentrations for HCT. A total of 49 participants (21 SCID adult and pediatric participants with a median age of 12 yr and 28 MDS/AML adult participants with a median age of 70 yr) were included in the PK analysis. A 2-compartment model with combined linear and non-linear elimination best described the PK of briquilimab. Body weight was determined as the sole covariate of the PK parameters among the explored covariates. For a typical subject with a body weight 70 kg, the estimated parameters for clearance, maximum metabolic rate of Michaelis Menten elimination, Michaelis Menten constant, central volume, peripheral volume, and intercompartmental clearance were 17.6 mL/h, 51,434.8 ng/h, 71.5 ng/mL, 3444.0 mL, 1613.3 mL, and 21.2 mL/h, respectively. The median time to reach target concentrations of 500, 1000, and 2000 ng/mL after a single dose of 0.6 mg/kg was calculated as 12.3, 10.4, and 7.7 days, respectively. The PK of intravenous briquilimab was characterized in subjects with SCID, MDS, or AML receiving HCT, and a population PK model was developed to estimate briquilimab clearance to use as a guide to the timing of donor cell infusion post-briquilimab. Body weight was identified as a significant covariate on elimination and volume of distribution of briquilimab.

3.
J Clin Pharmacol ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38953605

RESUMEN

Extracorporeal membrane oxygenation (ECMO) support of critically ill pediatric patients is associated with increased risk of thromboembolic events, and unfractionated heparin is used commonly for anticoagulation. Given reports of acquired antithrombin (AT) deficiency in this patient population and associated concern for heparin resistance, AT activity measurement and off-label AT replacement have become common in pediatric ECMO centers despite limited optimal dosing regimens. We conducted a retrospective cohort study of pediatric ECMO patients (0 to <18 years) at a single academic center to characterize the pharmacokinetics (PK) of human plasma-derived AT. We demonstrated that a two-compartment turnover model appropriately described the PK of AT, and the parameter estimates for clearance, central volume, intercompartmental clearance, peripheral volume, and basal AT input under non-ECMO conditions were 0.338 dL/h/70 kg, 38.5 dL/70 kg, 1.16 dL/h/70 kg, 40.0 dL/70 kg, and 30.4 units/h/70 kg, respectively. Also, ECMO could reduce bioavailable AT by 50% resulting in 2-fold increase of clearance and volume of distribution. To prevent AT activity from falling below predetermined thresholds of 50% activity in neonates and 80% activity in older infants and children, we proposed potential replacement regimens for each age group, accompanied by therapeutic drug monitoring.

4.
Artículo en Inglés | MEDLINE | ID: mdl-38844189

RESUMEN

In this study, we focused on confirming the steroid hormone receptor-mediated endocrine-disrupting potential of the pyrethroid insecticide fenvalerate and unraveling the underlying mechanisms. Therefore, we assessed estrogen receptor-α (ERα)- and androgen receptor (AR)-mediated responses in vitro using a hormone response element-dependent transcription activation assay with a luciferase reporter following the Organization for Economic Cooperation and Development (OECD) test guidelines. We observed that fenvalerate acted as estrogen by inducing the translocation of cytosolic ERα to the nucleus via ERα dimerization, whereas it exhibited no AR-mediated androgen response element-dependent luciferase activity. Furthermore, we confirmed that fenvalerate-induced activation of ERα caused lipid accumulation, promoted in a fenvalerate-dependent manner in 3 T3-L1 adipocytes. Moreover, fenvalerate-induced lipid accumulation was inhibited in the presence of an ERα-selective antagonist, whereas it remained unaffected in the presence of a glucocorticoid receptor (GR)-specific inhibitor. In addition, fenvalerate was found to stimulate the expression of transcription factors that promote lipid accumulation in 3 T1-L1 adipocytes, and co-treatment with an ERα-selective antagonist suppressed adipogenic/ lipogenic transcription factors at both mRNA and protein levels. These findings suggest that fenvalerate exposure may lead to lipid accumulation by interfering with ERα activation-dependent processes, thus causing an ERα-mediated endocrine-disrupting effect.


Asunto(s)
Células 3T3-L1 , Disruptores Endocrinos , Receptor alfa de Estrógeno , Nitrilos , Piretrinas , Piretrinas/toxicidad , Animales , Nitrilos/toxicidad , Ratones , Disruptores Endocrinos/toxicidad , Receptor alfa de Estrógeno/metabolismo , Receptor alfa de Estrógeno/genética , Adipocitos/efectos de los fármacos , Adipocitos/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Receptores Androgénicos/metabolismo , Insecticidas/toxicidad , Organización para la Cooperación y el Desarrollo Económico
5.
Front Psychol ; 15: 1359276, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38711750

RESUMEN

Life activities profoundly influence well-being, mental health, and quality of life. The COVID-19 pandemic has heightened the importance of monitoring these activities for psychological and emotional health. However, existing measurement tools are limited, particularly for assessing psychological health. To address this gap, we developed and validated the Core Life Activities (CORE) scale, comprising five key factors (sleep, exercise, learning, diet, and social relationships) identified in neuroscience, cognitive psychology, and gerontology. In Study 1 (n = 1,137), exploratory and confirmatory factor analyses supported a single-factor structure with good model fit (χ2 = 6.377, df = 3, TLI = 0.992, CFI = 0.998, RMSEA = 0.031), demonstrating robust internal consistency (Cronbach's alpha = 0.776) and test-retest reliability (intraclass correlation coefficient = 0.522, p < 0.001). The CORE exhibited significant convergent validity with mental health screening tools for depressive and anxiety disorders and suicidality. Study 2 (n = 684) confirmed a significant correlation between CORE and the World Health Organisation Quality of Life Brief Version, complementing the convergent validity found in Study 1. In addition, discriminant validity was confirmed by a non-significant correlation with the COVID-19 Preventive Behavior Scale. The findings establish the CORE as a reliable and valid tool, offering a simple yet comprehensive measure for assessing core life activities with potential applications in diverse environments.

6.
Math Biosci Eng ; 21(2): 2901-2921, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38454712

RESUMEN

Early detection of the risk of sarcopenia at younger ages is crucial for implementing preventive strategies, fostering healthy muscle development, and minimizing the negative impact of sarcopenia on health and aging. In this study, we propose a novel sarcopenia risk detection technique that combines surface electromyography (sEMG) signals and empirical mode decomposition (EMD) with machine learning algorithms. First, we recorded and preprocessed sEMG data from both healthy and at-risk individuals during various physical activities, including normal walking, fast walking, performing a standard squat, and performing a wide squat. Next, electromyography (EMG) features were extracted from a normalized EMG and its intrinsic mode functions (IMFs) were obtained through EMD. Subsequently, a minimum redundancy maximum relevance (mRMR) feature selection method was employed to identify the most influential subset of features. Finally, the performances of state-of-the-art machine learning (ML) classifiers were evaluated using a leave-one-subject-out cross-validation technique, and the effectiveness of the classifiers for sarcopenia risk classification was assessed through various performance metrics. The proposed method shows a high accuracy, with accuracy rates of 0.88 for normal walking, 0.89 for fast walking, 0.81 for a standard squat, and 0.80 for a wide squat, providing reliable identification of sarcopenia risk during physical activities. Beyond early sarcopenia risk detection, this sEMG-EMD-ML system offers practical values for assessing muscle function, muscle health monitoring, and managing muscle quality for an improved daily life and well-being.


Asunto(s)
Sarcopenia , Humanos , Electromiografía/métodos , Sarcopenia/diagnóstico , Algoritmos , Aprendizaje Automático , Envejecimiento
7.
Pestic Biochem Physiol ; 199: 105757, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38458660

RESUMEN

Fenhexamid are fungicides that act against plant pathogens by inhibiting sterol biosynthesis. Nonetheless, it can trigger endocrine disruption and promote breast cancer cell growth. In a recent study, we investigated the mechanism underlying the lipid accumulation induced by fenhexamid hydroxyanilide fungicides in 3 T3-L1 adipocytes. To examine the estrogen receptor alpha (ERα)-agonistic effect, ER transactivation assay using the ERα-HeLa-9903 cell line was applied, and fenhexamid-induced ERα agonist effect was confirmed. Further confirmation that ERα-dependent lipid accumulation occurred was provided by treating 3 T3-L1 adipocytes with Methyl-piperidino-pyrazole hydrate (MPP), an ERα-selective antagonist. Fenhexamid mimicked the actions of ERα agonists and impacted lipid metabolism, and its mechanism involves upregulation of the expression of transcription factors that facilitate adipogenesis and lipogenesis. Additionally, it stimulated the expression of peroxisome proliferator-activated receptor (PPARγ), CCAAT/enhancer-binding protein α (C/EBPα), fatty acid synthase (FAS), and sterol regulatory element-binding protein 1 (SREBP1) and significantly elevated the expression of fatty acid-binding protein 4 (FABP4). In contrast, in combination with an ERα-selective antagonist, fenhexamid suppressed the expression of adipogenic/lipogenic transcription factors. These results suggest that fenhexamid affects the endocrine system and leads to lipid accumulation by interfering with processes influenced by ERα activation.


Asunto(s)
Amidas , Receptor alfa de Estrógeno , Fungicidas Industriales , Ratones , Animales , Receptor alfa de Estrógeno/genética , Receptor alfa de Estrógeno/metabolismo , Fungicidas Industriales/toxicidad , Fungicidas Industriales/metabolismo , Adipocitos/metabolismo , Adipogénesis , Metabolismo de los Lípidos , Proteína alfa Potenciadora de Unión a CCAAT/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/farmacología , Lípidos , Células 3T3-L1 , PPAR gamma/metabolismo
8.
BMC Cancer ; 24(1): 357, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38509504

RESUMEN

BACKGROUND: Biliary tract cancer (BTC) is a relatively rare but aggressive gastrointestinal cancer with a high mortality rate. Cancer stem cell (CSC) populations play crucial roles in tumor biology and are responsible for the low response to anti-cancer treatment and the high recurrence rate. This study investigated the role of Transgelin-2 (TAGLN2), overexpressed in CSC in BTC cells, and analyzed its expression in patient tissues and serum to identify potential new targets for BTC. METHODS: TAGLN2 expression was suppressed by small-interfering or short hairpin RNAs, and its effects on tumor biology were assessed in several BTC cell lines. Furthermore, the effects of TAGLN2 silencing on gemcitabine-resistant BTC cells, differentially expressed genes, proteins, and sensitivity to therapeutics or radiation were assessed. TAGLN2 expression was also assessed using western blotting and immunohistochemistry in samples obtained from patients with BTC to validate its clinical application. RESULTS: Suppression of TAGLN2 in BTC cell lines decreased cell proliferation, migration, invasion, and tumor size, in addition to a reduction in CSC features, including clonogenicity, radioresistance, and chemoresistance. TAGLN2 was highly expressed in BTC tissues, especially in cancer-associated fibroblasts in the stroma. Patients with a low stromal immunohistochemical index had prolonged disease-free survival compared to those with a high stromal immunohistochemical index (11.5 vs. 7.4 months, P = 0.013). TAGLN2 expression was higher in the plasma of patients with BTC than that in those with benign diseases. TAGLN2 had a higher area under the curve (0.901) than CA19-9, a validated tumor biomarker (0.799; P < 0.001). CONCLUSION: TAGLN2 plays a critical role in promoting BTC cell growth and motility and is involved in regulating BTC stemness. Silencing TAGLN2 expression enhanced cell sensitivity to radiation and chemotherapeutic drugs. The expression of TAGLN2 in patient tissue and plasma suggests its potential to serve as a secretory biomarker for BTC. Overall, targeting TAGLN2 could be an appropriate therapeutic strategy against advanced cancer following chemotherapy failure.


Asunto(s)
Neoplasias del Sistema Biliar , Proteínas de Microfilamentos , Humanos , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Proteínas Musculares/genética , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Neoplasias del Sistema Biliar/tratamiento farmacológico , Neoplasias del Sistema Biliar/genética , Línea Celular Tumoral
9.
J Psychiatr Res ; 173: 80-86, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38513369

RESUMEN

BACKGROUND: Examining the daily experiences of older adults with depression facilitates the development and application of personalized effective treatments for them. In previous clinical research on depression, traditional mean-based approaches have mainly been employed. However, the within-person residual variance as a random effect provides greater insight into the heterogeneity of daily experiences among geriatric samples. OBJECTIVE: This study aimed to examine the relationship between depression and daily vitality in older adults. Specifically, it focused on the mean and residual variance of daily vitality measured by the Ecological Momentary Assessment (EMA). METHODS: Data from 64 older adults aged 65 years or more, who participated in community welfare centers or retirees' associations, were used. Daily vitality was examined using EMA surveys for seven consecutive days (four random surveys per day). The data were analyzed using a location-scale model. RESULTS: The intraclass correlation computed from the empty model for the EMA data was 0.488, indicating significant variances in daily vitality across time between individuals. Older adults with higher levels of depressive symptoms showed low mean levels of daily vitality and a large log-residual variance of daily vitality. CONCLUSIONS: The findings from the current study suggest that individuals experiencing depression not only exhibit low vitality in their daily lives but also struggle to maintain stable levels of vitality in their lives. These insights could contribute to the facilitation and advancement of personalized interventions tailored for older adults.


Asunto(s)
Depresión , Evaluación Ecológica Momentánea , Humanos , Anciano , Depresión/epidemiología , Depresión/diagnóstico , Análisis Multinivel , Encuestas y Cuestionarios
10.
Ecotoxicol Environ Saf ; 274: 116227, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38493703

RESUMEN

In current study, Fusarium mycotoxin, beauvericin (BEA), has endocrine disrupting potential through suppressing the exogenous androgen receptor (AR)-mediated transcriptional activation. BEA was classified as an AR antagonist, with IC30 and IC50 values indicating that it suppressed AR dimerization in the cytosol. BEA suppress the translocation of cytosolic activated ARs to the nucleus via exogenous androgens. Furthermore, we investigated the impact of environmental conditions for BEA production on rice cereal using response surface methodology. The environmental factors affecting the production of BEA, namely temperature, initial moisture content, and growth time were optimized at 20.28 °C, 42.79 % (w/w), and 17.31 days, respectively. To the best of our knowledge, this is the first report showing that BEA has endocrine disrupting potential through suppressing translocation of cytosolic ARs to nucleus, and temperature, initial moisture content, and growth time are important influencing environmental factors for its biosynthesis in Fusarium strains on cereal.


Asunto(s)
Depsipéptidos , Fusarium , Micotoxinas , Oryza , Receptores Androgénicos , Humanos , Depsipéptidos/toxicidad , Grano Comestible/química , Fusarium/metabolismo , Micotoxinas/toxicidad , Oryza/química , Receptores Androgénicos/efectos de los fármacos , Receptores Androgénicos/metabolismo , Disruptores Endocrinos/química , Disruptores Endocrinos/toxicidad
11.
J Hazard Mater ; 469: 133935, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38442602

RESUMEN

Bisphenol A (BPA) and its various forms used as BPA alternatives in industries are recognized toxic compounds and antiandrogenic endocrine disruptors. These chemicals are widespread in the environment and frequently detected in biological samples. Concerns exist about their impact on hormones, disrupting natural biological processes in humans, together with their negative impacts on the environment and biotic life. This study aims to characterize the interaction between BPA analogs and the androgen receptor (AR) and the effect on the receptor's normal activity. To achieve this goal, molecular docking was conducted with BPA and its analogs and dihydrotestosterone (DHT) as a reference ligand. Four BPA analogs exhibited higher affinity (-10.2 to -8.7 kcal/mol) for AR compared to BPA (-8.6 kcal/mol), displaying distinct interaction patterns. Interestingly, DHT (-11.0 kcal/mol) shared a binding pattern with BPA. ADMET analysis of the top 10 compounds, followed by molecular dynamics simulations, revealed toxicity and dynamic behavior. Experimental studies demonstrated that only BPA disrupts DHT-induced AR dimerization, thereby affecting AR's function due to its binding nature. This similarity to DHT was observed during computational analysis. These findings emphasize the importance of targeted strategies to mitigate BPA toxicity, offering crucial insights for interventions in human health and environmental well-being.


Asunto(s)
Disruptores Endocrinos , Receptores Androgénicos , Humanos , Receptores Androgénicos/metabolismo , Disruptores Endocrinos/metabolismo , Simulación del Acoplamiento Molecular , Fenoles/metabolismo , Dihidrotestosterona/farmacología , Compuestos de Bencidrilo/toxicidad , Compuestos de Bencidrilo/metabolismo
12.
J Steroid Biochem Mol Biol ; 239: 106483, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38369033

RESUMEN

Beauvericin (BEA) is a cyclic depsipeptide secondary metabolite of Fusarium species. It causes chemical hazards in food products and exists in an environment containing soil and various food types. On the other hand, the purified BEA has various biological activities and is regarded as a potential candidate for pharmaceutical research. This study was performed to assess the anti-proliferation activity of BEA against human breast cancer cells by regulating the estrogen receptor-alpha (ERα)/p38 pathway. TA and BA assays verified that BEA is a completed ER antagonist. Additionally, BEA suppressed cell proliferation in the anti-proliferation assay involving ER-positive human breast cancer cells co-treated with BPA and BEA. In respect to an anti-proliferation activity, the BPA-induced phosphorylation of p38 protein was inhibited in the presence of BEA. These results suggested that BEA exerts inhibitory potentials on endocrine disrupting effect and possibly acts as a natural therapeutic material for human estrogen hormonal health.


Asunto(s)
Compuestos de Bencidrilo , Neoplasias de la Mama , Depsipéptidos , Fusarium , Fenoles , Humanos , Femenino , Receptor alfa de Estrógeno/metabolismo , Fusarium/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Depsipéptidos/farmacología , Depsipéptidos/metabolismo , Proliferación Celular , Línea Celular , Línea Celular Tumoral
13.
Ecotoxicology ; 33(1): 22-33, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38182934

RESUMEN

Atlantic killifish (Fundulus heteroclitus) is a valuable model in evolutionary toxicology to study how the interactions between genetic and environmental factors serve the adaptive ability of organisms to resist chemical pollution. Killifish populations inhabiting environmental toxicant-contaminated New Bedford Harbor (NBH) show phenotypes tolerant to polychlorinated biphenyls (PCBs) and differences at the transcriptional and genomic levels. However, limited research has explored epigenetic alterations and metabolic effects in NBH killifish. To identify the involvement of epigenetic and metabolic regulation in the adaptive response of killifish, we investigated tissue- and sex-specific differences in global DNA methylation and metabolomic profiles of NBH killifish populations, compared to sensitive populations from a non-polluted site, Scorton Creek (SC). The results revealed that liver-specific global DNA hypomethylation and differential metabolites were evident in fish from NBH compared with those from SC. The sex-specific differences were not greater than the tissue-specific differences. We demonstrated liver-specific enriched metabolic pathways (e.g., amino acid metabolic pathways converged into the urea cycle and glutathione metabolism), suggesting possible crosstalk between differential metabolites and DNA hypomethylation in the livers of NBH killifish. Additional investigation of methylated gene regions is necessary to understand the functional role of DNA hypomethylation in the regulation of enzyme-encoding genes associated with metabolic processes and physiological changes in NBH populations.


Asunto(s)
Fundulidae , Contaminantes Químicos del Agua , Animales , Masculino , Femenino , Fundulus heteroclitus , Fundulidae/genética , Metilación de ADN , Hígado/metabolismo , ADN/metabolismo , ADN/farmacología , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/metabolismo
14.
PLoS One ; 19(1): e0295629, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38277404

RESUMEN

Targeted therapies for inhibiting the growth of cancer cells or inducing apoptosis are urgently needed for effective rhabdomyosarcoma (RMS) treatment. However, identifying cancer-targeting compounds with few side effects, among the many potential compounds, is expensive and time-consuming. A computational approach to reduce the number of potential candidate drugs can facilitate the discovery of attractive lead compounds. To address this and obtain reliable predictions of novel cell-line-specific drugs, we apply prediction models that have the potential to improve drug discovery approaches for RMS treatment. The results of two prediction models were ensemble and validated via in vitro experiments. The computational models were trained using data extracted from the Genomics of Drug Sensitivity in Cancer database and tested on two RMS cell lines to select potential RMS drug candidates. Among 235 candidate drugs, 22 were selected following the result of the computational approach, and three candidate drugs were identified (NSC207895, vorinostat, and belinostat) that showed selective effectiveness in RMS cell lines in vitro via the induction of apoptosis. Our in vitro experiments have demonstrated that our proposed methods can effectively identify and repurpose drugs for treating RMS.


Asunto(s)
Rabdomiosarcoma , Humanos , Línea Celular Tumoral , Rabdomiosarcoma/tratamiento farmacológico , Rabdomiosarcoma/metabolismo , Apoptosis , Genómica , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...