Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biomater Sci ; 12(4): 907-918, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38174731

RESUMEN

The use of dissolving microneedles (DMNs) is a drug delivery technique in which drug dissolution occurs once it is administered into the skin. The skin is a remarkable site for vaccination due to its significant immunologic properties. Compared to the traditional hypodermic intramuscular (IM) injection, vaccination via DMN does not require cold chains and allows for minimal invasive drug delivery. On account of the significance of skin vaccination, preceding studies have been conducted to elucidate the importance of the DMN technology in vaccination. Most of these studies focused on formulations that maintain the activity of the vaccine, so formulations designed to be specific to the mechanical properties of the microneedle could not be used together independently. In this study, we have developed influenza vaccine loaded egg microneedles (EMN) and characterized the specificity of layer-specific functions of EMN by distinguishing between formulations that can maintain the activity of the vaccine and have the mechanical strength. By the use of in vitro tests such as ELISA and SRID assays, we quantitively evaluated the antigen activity of the formulation candidates to be 87% and 91%, respectively. In vivo tests were also conducted as mouse groups were inoculated with the formulation constructed into egg microneedles (FLU-EMN) to determine the protective efficacy against infection. The results demonstrated that FLU-EMN with functionalized formulations successfully enabled protective immune response even with a fractional dose compared to IM injection.


Asunto(s)
Vacunas contra la Influenza , Orthomyxoviridae , Animales , Ratones , Inyecciones Intradérmicas , Vacunación/métodos , Piel , Sistemas de Liberación de Medicamentos
2.
J Mater Chem B ; 11(39): 9323-9324, 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37767753
3.
Biomater Sci ; 11(20): 6685-6686, 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37767894
4.
Adv Healthc Mater ; 12(26): e2300889, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37337388

RESUMEN

The coronavirus pandemic has accelerated the development of next-generation vaccination technology to combat future pandemic outbreaks. Mucosal vaccination effectively protects the mucosal surfaces, the primary sites of viral entry, by inducing the secretion of immunoglobulin A (IgA) and humoral IgG. Here, a dissolving microneedle (DMN) is adopted as a mucosal vaccine delivery platform to directly penetrate the sublingual site, which is rich in antigen-presenting cells (APCs) and lymphoid tissues. The sublingual dissolving microneedle (SLDMN) vaccination platform comprised a micropillar-based compartment and a 3D-printed SLDMN applicator as a substitute for the DMN patch. The penetration efficacy of SLDMNs is assessed using in vitro optical coherence tomography (OCT) and in vivo histological analysis. The efficacy of SLDMN is also evaluated in a vaccine form using the recombinant spike (S1) protein of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Furthermore, SLDMN is used to challenge transgenic mice expressing human angiotensin-converting enzyme 2 (hACE2) receptors. Its effects are evaluated on antibody production, survival rate, and inflammation attenuation after infection compared to the intramuscular (IM) injections. Overall, SLDMN effectively induced mucosal immunity via IgA secretion, attenuated lung inflammation, and lowered the levels of cytokines and chemokines, which may prevent the "cytokine storm" after SARS-CoV-2 infection.


Asunto(s)
COVID-19 , Vacunas Virales , Ratones , Animales , Humanos , SARS-CoV-2 , Anticuerpos Antivirales , Inmunidad Mucosa , COVID-19/prevención & control , Inmunoglobulina A/análisis
5.
Expert Opin Drug Deliv ; 20(6): 851-861, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37249145

RESUMEN

BACKGROUND: Lidocaine has been widely used as a short-acting local anesthetic agent to reduce the pain caused by needle insertion. Dissolving microneedles (DMNs), which are minimally invasive, can effectively deliver drugs by overcoming the oral mucosal barrier and relieving patient discomfort. METHODS: Lidocaine solution prepared by mixing lidocaine-HCl and hyaluronic acid was used to fabricate oral lidocaine HCl-encapsulated DMNs (oral Li-DMNs) via centrifugal lithography. The dissolution, penetration ability, and local transmucosal drug delivery of oral Li-DMNs into the oral mucosa were evaluated in porcine jaws. Pharmacokinetic analysis and safety assessment were performed using rabbits. RESULTS: The insertion depth of the oral Li-DMNs satisfies the safety standard. The oral Li-DMNs were completely dissolved after 3 min of application. The local transmucosal drug delivery, pharmacokinetic, and safety evaluations showed that the oral Li-DMNs can obtain a local anesthesia effect at a relatively lower dose, and there was no oral mucosal irritation in rabbits. CONCLUSIONS: A novel and safe oral Li-DMNs have potential applications in large animals and clinical trials and would possibly enter the anesthesia market.


Asunto(s)
Lidocaína , Piel , Porcinos , Conejos , Animales , Anestesia Local , Mucosa Bucal , Sistemas de Liberación de Medicamentos/métodos , Administración Cutánea , Agujas , Odontología
6.
Lab Chip ; 23(10): 2378-2388, 2023 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-36919574

RESUMEN

Obesity is a chronic metabolic disease that is prevalent worldwide, causing complications that affect the quality of life and longevity of humans. Currently, the low bioavailability upon subcutaneous injection of an appetite suppressant, liraglutide, and health problems in the locally injected region remain to be overcome. In this study, we developed a novel hyaluronic acid-based liraglutide-encapsulated triple-layer microneedle (TLM) as a painless and patient-friendly long-term drug delivery system. In contrast to previous anti-obesity microneedle approaches, this TLM is composed of three layers for complete skin insertion, protecting the encapsulated liraglutide from environmental stresses. Daily topical application of the liraglutide-loaded TLM significantly reduced body weight and improved body composition in a mouse model of high-fat diet-induced obesity. Additionally, it ameliorated diet-induced hepatic steatosis in obese mice. This novel TLM could promote a glucagon-like peptide-1 drug release system for long-term daily administration with relatively higher patient compliance compared to subcutaneous injection.


Asunto(s)
Ácido Hialurónico , Liraglutida , Ratones , Animales , Humanos , Liraglutida/uso terapéutico , Liraglutida/farmacología , Ácido Hialurónico/uso terapéutico , Calidad de Vida , Obesidad/tratamiento farmacológico , Dieta Alta en Grasa
7.
Acta Biomater ; 160: 112-122, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36764594

RESUMEN

Dissolving microneedles (DMNs), despite their minimally invasive drug administration, face challenges in skin insertion and drug-loading capacity, which lead to less effective drug delivery. The micro-pillar tunnel stamp (MPTS) was designed to enhance the transdermal delivery efficacy of externally provided topical formulations via the creation of microchannels. The tunnel and canal of the MPTS enable the simultaneous application of DMNs and topical drugs. The application of micro-pillar-polycaprolactone (MP-PCL), which is a DMN made of a slowly dissolving polymer, exhibited a drug permeation rate 1.3-fold and 2.6-fold higher than that of micro-pillar-hyaluronic acid (MP-HA), a DMN made of a rapidly dissolving polymer, and the topical group, respectively. The base diameter of MP-PCL was set to 700 µm for maximized delivery efficacy, achieving 2.8-fold higher L-ascorbic acid accumulation than that of the topical group. In vivo analysis showed that, compared to topical administration, MPTS-delivered lidocaine had 5-fold greater permeation and the MPTS-delivered group showed 1.25-fold higher skin residual amount, confirming enhanced delivery. Thus, the optimized MPTS system can be presented as an attractive alternative to overcome the limitations of the existing MN systems such as incomplete insertion and limited drug-loading capacity, enhancing the delivery of topical formulations in the transdermal market. STATEMENT OF SIGNIFICANCE: We developed a micro-pillar tunnel stamp (MPTS) to enhance the delivery of externally provided topical formulations. The functional tunnel and canal of the MPTS enabled the simultaneous application of a dissolving microneedle (DMN) array insertion and administration of external topical drugs. Upon insertion, the DMNs created skin microchannels that allowed the externally administered drug to diffuse. DMNs were fabricated using polycaprolactone (PCL), a slowly dissolving polymer, to maintain their structure inside the skin and prolong the opening duration of the microchannels. This system achieved significantly improved delivery of topically administered external drugs via integration with slowly dissolving DMNs, while offering the possibility of its development as a universal delivery system for various topical pharmaceuticals.


Asunto(s)
Sistemas de Liberación de Medicamentos , Piel , Composición de Medicamentos , Administración Cutánea , Polímeros/química , Agujas
8.
Adv Healthc Mater ; 12(9): e2202473, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36617627

RESUMEN

Liraglutide, a human glucagon-like peptide-1 (GLP-1) analog, is promising for safely treating type 2 diabetes mellitus (T2DM), compared to insulin, by significantly reducing the risk of glucose-dependent hypoglycemia. Concerns related to injection prevent T2DM patients from taking liraglutide regularly, even though once-a-day subcutaneous (SC) injections. Dissolving microneedles (DMNs) are promising substitutes for SC injection and for improving patient convenience. However, there are two fundamental limitations: the low drug delivery due to incomplete insertion and loss of drug activity during DMN fabrication. Here, it is shown that an egg microneedle (EMN) designed with three functional layered structures can maintain the maximum activity of the loaded compound during DMN fabrication and deliver it completely into the skin, with the base layer allowing the complete delivery of liraglutide, and the shell layer maintaining the drug activity by mimicking the role of albumin in eggs. In a diabetic mouse model, liraglutide administration via EMN exhibited similar effect when compared to that of injection. Therefore, EMN-mediated liraglutide administration is a good potential option for replacing liraglutide injections in T2DM treatment.


Asunto(s)
Diabetes Mellitus Tipo 2 , Liraglutida , Ratones , Animales , Humanos , Liraglutida/farmacología , Liraglutida/uso terapéutico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Administración Cutánea , Piel , Péptido 1 Similar al Glucagón
9.
Biomater Adv ; 145: 213248, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36610239

RESUMEN

Dissolving microneedles (DMNs) are used for minimally invasive transdermal drug delivery. Dissolution of drugs is achieved in the body after skin penetration by DMNs. Unlike injections, the insertion depth of the DMN is an important issue because the amount of dissolved DMN in the skin determines the amount of drug delivered. Therefore, the inaccurate drug delivery due to the incomplete insertion is one of the limitations of the DMN. Thus, many insertion and penetration tests have been essentially conducted in DMN studies, yet only incomplete insertion is known and the exact standard for how much it is not inserted is still unknown. Moreover, there are various shapes have been introduced in the microneedle field, there have been only few studies that have compared and evaluated the insertion depth of the shapes. Here, we present an intensive approach for DMN insertion based on DMN shape among various insertion deciding factors. We numerically analyzed the volumetric distribution of three types of DMN shapes: conical-shaped DMN, funnel-shaped DMN, and candlelit-shaped DMN, and introduced a new insertion evaluation criterion while covering previous insertion evaluations. Using optical coherence tomography, the images of DMNs embedded in the skin were analyzed in rea l-time, and the amount of drug delivered was analyzed at sectioned depth with a cryotome. The in vitro data confirmed that the insertion depth differed based on shape, and the resulting drug delivery depended on the volume assigned to the insertion depth. Insulin-loaded DMNs were applied to C57BL/6 mice, and the results of pharmacokinetic and pharmacodynamic analyses supported the results of the in vitro analysis. Our approach, which considers the correlation between DMN shape and insertion depth, will contribute to establishing criteria for various DMN design and maximizing drug delivery.


Asunto(s)
Sistemas de Liberación de Medicamentos , Piel , Ratones , Animales , Ratones Endogámicos C57BL , Piel/metabolismo , Administración Cutánea , Sistemas de Liberación de Medicamentos/métodos , Liberación de Fármacos
10.
Pharmaceutics ; 14(12)2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36559297

RESUMEN

Topical liquid formulations, dissolving microneedles (DMNs), and microscale needles composed of biodegradable materials have been widely used for the transdermal delivery of active compounds for skincare. However, transdermal active compound delivery by topical liquid formulation application is inhibited by skin barriers, and the skincare efficacy of DMNs is restricted by the low encapsulation capacity and incomplete insertion. In this study, topical serum application via a dissolvable micro-channeling system (DMCS) was used to enhance serum delivery through micro-channels embedded with DMNs. Transdermal serum delivery was evaluated after the topical-serum-only application and combinatorial serum application by assessing the intensity of allophycocyanin (APC) loaded with the serum in the porcine skin. APC intensity was significantly higher in the skin layer at a depth of 120-270 µm upon combinatorial serum application as compared to topical-serum-only application. In addition, the combinatorial serum application showed significantly improved efficacy in the clinical assessment of skin hydration, depigmentation, improvement of wrinkles, elasticity, dermal density, skin pores, and skin soothing without any safety issues compared to the serum-only application. The results indicate that combinatorial serum application with DMCS is a promising candidate for improving skincare treatments with optimal transdermal delivery of active compounds.

11.
Polymers (Basel) ; 14(19)2022 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-36235975

RESUMEN

Teriparatide acetate (TA), which directly promotes bone formation, is subcutaneously injected to treat osteoporosis. In this study, TA with a once-weekly administration regimen was loaded on dissolving microneedles (DMNs) to effectively deliver it to the systemic circulation via the transdermal route. TA activity reduction during the drying process of various TA polymer solutions formulated with hyaluronic acid and trehalose was monitored and homogeneities were assessed. TA-DMN patches fabricated using centrifugal lithography in a two-layered structure with dried pure hyaluronic acid on the base layer and dried TA polymer solution on the top layer were evaluated for their physical properties. Rhodamine-B-loaded TA-DMNs were found to form perforations when inserted into porcine skin using a shooting device. In addition, 87.6% of TA was delivered to the porcine skin after a 5-min TA-DMN patch application. The relative bioavailability of TA via subcutaneous injection was 66.9% in rats treated with TA-DMN patches. The maximal TA concentration in rat plasma was proportional to the number of patches used. Therefore, the TA-DMN patch fabricated in this study may aid in the effective delivery of TA in a patient-friendly manner and enhance medical efficacy in osteoporosis treatment.

12.
Biomater Res ; 26(1): 53, 2022 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-36199121

RESUMEN

BACKGROUND: Dissolving microneedle (DMN) is a transdermal drug delivery system that creates pore in the skin and directly deliver drug through the pore channel. DMN is considered as one of the promising system alternatives to injection because it is minimally invasive and free from needle-related issues. However, traditional DMN patch system has limitations of incomplete insertion and need of complex external devices. Here, we designed film-trigger applicator (FTA) system that successfully delivered DMN inside the skin layers using fracture energy of carboxymethyl cellulose (CMC) film via micropillars. We highlighted advantages of FTA system in DMN delivery compared with DMN patch, including that the film itself can act as DMN applicator. METHODS: FTA system consists of DMNs fabricated on the CMC film, DMN array holder having holes aligned to DMN array, and micropillars prepared using general purpose polystyrene. We analyzed punching force on the film by micropillars until the film puncture point at different CMC film concentrations and micropillar diameters. We also compared drug delivery efficiency using rhodamine B fluorescence diffusion and skin penetration using optical coherence tomography (OCT) of FTA with those of conventional DMN patch. In vivo experiments were conducted to evaluate DMN delivery efficiency using C57BL/6 mice and insulin as a model drug. RESULTS: FTA system showed enhanced delivery efficiency compared with that of the existing DMN patch system. We concluded CMC film as a successful DMN applicator as it showed enhanced DMN penetration in OCT and rhodamine B diffusion studies. Further, we applied FTA on shaved mouse dorsal skin and observed successful skin penetration. The FTA group showed higher level of plasma insulin in vivo than that of the DMN patch group. CONCLUSIONS: FTA system consisting of simple polymer film and micropillars showed enhanced DMN delivery than that of the existing DMN patch system. Because FTA works with simple finger force without sticky patch and external devices, FTA is a novel and promising platform to overcome the limitations of conventional microneedle patch delivery system; we suggest FTA as a next generation applicator for microneedle application in the future.

13.
Pharmaceutics ; 13(7)2021 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-34371749

RESUMEN

Dissolving microneedles (DMNs) have been used as an alternative drug delivery system to deliver therapeutics across the skin barrier in a painless manner. In this study, we propose a novel heat-melting method for the fabrication of hydrophobic poly(lactic-co-glycolic acid) (PLGA) DMNs, without the use of potentially harmful organic solvents. The drug-loaded PLGA mixture, which consisted of a middle layer of the DMN, was optimized and successfully implanted into ex vivo porcine skin. Implanted HMP-DMNs separated from the patch within 10 min, enhancing user compliance, and the encapsulated molecules were released for nearly 4 weeks thereafter. In conclusion, the geometry of HMP-DMNs was successfully optimized for safe and effective transdermal sustained drug delivery without the use of organic solvents. This study provides a strategy for the innovative utilization of PLGA as a material for transdermal drug delivery systems.

14.
Adv Sci (Weinh) ; 8(14): 2004873, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34306973

RESUMEN

Chronic inflammatory skin diseases (CISDs) negatively impact a large number of patients. Injection of triamcinolone acetonide (TA), an anti-inflammatory steroid drug, directly into the dermis of diseased skin using needle-syringe systems is a long-established procedure for treating recalcitrant lichenified lesions of CISDs, referred to as TA intralesional injection (TAILI). However, TAILI causes severe pain, causing patients to be stressed and reluctant to undergo treatment. Furthermore, the practitioner dependency on the amount and depth of the injected TA makes it difficult to predict the prognosis. Here, candle flame ("candlelit")-shaped TA-loaded dissolving microneedles (Candlelit-DMN) are designed and fabricated out of biocompatible and biodegradable molecules. Candlelit-DMN distributes TA evenly across human skin tissue. Conjoined with the applicator, Candlelit-DMN is efficiently inserted into human skin in a standardized manner, enabling TA to be delivered within the target layer. In an in vivo skin inflammation mouse model, Candlelit-DMN inserted with the applicator effectively alleviates inflammation by suppressing inflammatory cell infiltration and cytokine gene expression, to the same extent as TAILI. This Candlelit-DMN with the applicator arouses the interest of dermatologists, who prefer it to the current TAILI procedure.


Asunto(s)
Antiinflamatorios/administración & dosificación , Sistemas de Liberación de Medicamentos/métodos , Enfermedades de la Piel/tratamiento farmacológico , Triamcinolona Acetonida/administración & dosificación , Administración Cutánea , Animales , Antiinflamatorios/uso terapéutico , Enfermedad Crónica , Modelos Animales de Enfermedad , Femenino , Inflamación/complicaciones , Inflamación/tratamiento farmacológico , Ratones , Ratones Endogámicos C57BL , Agujas , Piel , Enfermedades de la Piel/complicaciones , Triamcinolona Acetonida/uso terapéutico
15.
Adv Healthc Mater ; 10(7): e2001691, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33586358

RESUMEN

Dissolving microneedles (DMN) supplemented with therapeutic molecules have been developed to enhance transdermal delivery efficiency of topically applied drugs in a minimally invasive manner. However, the dose of the drugs in DMN system is limited owing to the low solubility of drug. In fact, although triamcinolone acetonide (TA) is one of the most widely prescribed drugs for relieving atopic dermatitis (AD), its poor dissolving nature makes it difficult to design and fabricate DMN containing therapeutic dosage of TA. In this study, TA suspension is introduced to encapsulate therapeutic dosage of TA. Sonication and composition optimization of polymers is key to fabricate high dose TA-DMN to induce particle size reduction and dispersion stability of suspension, respectively. After confirming the physical performance of TA-DMN using the selected formulation in vitro, the anti-inflammatory effects of TA-DMN are evaluated in vivo using a mouse model affected with skin inflammation to mimic AD in humans. Herein, high-dose TA-DMN is presented as a candidate agent for relieving AD and, furthermore, for wide application in the treatment of skin inflammatory diseases in which high-dose steroid drugs are required.


Asunto(s)
Dermatitis Atópica , Administración Cutánea , Dermatitis Atópica/tratamiento farmacológico , Sistemas de Liberación de Medicamentos , Humanos , Agujas , Esteroides
16.
Micromachines (Basel) ; 12(2)2021 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-33567577

RESUMEN

(1) Background: Dissolving microneedles (DMNs), a transdermal drug delivery system, have been developed to treat various diseases in a minimally invasive, painless manner. However, the currently available DMNs are based on burst release systems due to their hydrophilic backbone polymer. Although hydrophobic biodegradable polymers have been employed on DMNs for sustained release, dissolution in an organic solvent is required for fabrication of such DMNs. (2) Method: To overcome the aforementioned limitation, novel separable polycaprolactone (PCL) DMNs (SPCL-DMNs) were developed to implant a PCL-encapsulated drug into the skin. PCL is highly hydrophobic, degrades over a long time, and has a low melting point. Under thermal melting, PCL encapsulated capsaicin and could be fabricated into a DMN without the risk of toxicity from an organic solvent. (3) Results: Optimized SPCL-DMNs, containing PCL (height 498.3 ± 5.8 µm) encapsulating 86.66 ± 1.13 µg capsaicin with a 10% (w/v) polyvinyl alcohol and 20% (w/v) polyvinylpyrrolidone mixture as a base polymer, were generated. Assessment of the drug release profile revealed that this system could sustainably release capsaicin for 15 days from PCL being implanted in porcine skin. (4) Conclusion: The implantable SPCL-DMN developed here has the potential for future development of toxicity-free, sustained release DMNs.

17.
Pharmaceutics ; 12(11)2020 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-33182374

RESUMEN

Lidocaine is a local anesthetic agent used in the form of injection and topical cream. However, these formulation types have limitations of being either painful or slow-acting, thereby hindering effective and complete clinical performance of lidocaine. Dissolving microneedles (DMNs) are used to overcome these limitations owing to their fast onset time and minimally invasive administration methods. Using hyaluronic acid and lidocaine to produce the drug solution, a lidocaine HCl encapsulated DMN (Li-DMN) was fabricated by centrifugal lithography. The drug delivery rate and local anesthetic quality of Li-DMNs were evaluated using the pig cadaver insertion test and Von Frey behavior test. Results showed that Li-DMNs could deliver sufficient lidocaine for anesthesia that is required to be utilized for clinical level. Results from the von Frey test showed that the anesthetic effect of Li-DMNs was observed within 10 min after administration, thus confirming fast onset time. A toxicity test for appropriate clinical application standard was conducted with a microbial limit test and an animal skin irritation test, showing absence of skin irritation and irritation-related microorganisms. Overall, Li-DMN is a possible alternative drug delivery method for local anesthesia, meeting the requirements for clinical conditions and overcoming the drawbacks of other conventional lidocaine administration methods.

18.
Pharmaceutics ; 12(6)2020 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-32585966

RESUMEN

Dissolving microneedle (DMN) patches were developed as efficient and patient-friendly transdermal delivery systems for biopharmaceuticals. However, recent studies have confirmed that the efficiency of DMNs to deliver biopharmaceuticals is highly reduced because of incomplete insertion caused by the stiffness and elastic properties of the skin. Therefore, micropillar integrated DMNs were developed to overcome the insertion limitations of DMN patches. Although micropillars were designed as integrated applicators to implant DMNs across the skin, they can also become inserted into the skin, leading to skin injury and inflammation. Herein, we have developed a separable micropillar integrated DMN (SPDMN) capable of inserting DMNs across the skin with high efficiency while minimizing skin injury risk through the introduction of a safety ring feature. Unlike previously developed systems, the SPDMN does not require continuous skin attachment and can be detached immediately post-application, leaving DMNs implanted inside the skin. Altogether, the findings of this study lead to the development of a quick, safe, and efficient DMN-based drug delivery platform.

19.
Pharmaceutics ; 12(4)2020 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-32316406

RESUMEN

Microneedles are emerging drug delivery methods for painless treatment. The current study tested dissolving microneedles containing lidocaine (Li-DMN) for use in local anesthesia. An Li-DMN patch was fabricated by centrifugal lithography with carboxymethyl cellulose as a structural polymer and assessed for physical properties by optical microscopy and a fracture force analyzer. The biocompatibility was evaluated by a histology section in vitro and by ear thickness in vivo. The efficacy of the Li-DMN patch was assessed by electrophysiological recordings in primary cultured sensory neurons in vitro and a von Frey test on rats' hind paws in vivo. The physical properties of the microneedle showed enough rigidity for transdermal penetration. The maximal capacity of lidocaine-HCl in the Li-DMN patch was 331.20 ± 6.30 µg. The cytotoxicity of the dissolving microneedle to neuronal cells was negligible under an effective dose of lidocaine for 18 h. Electrophysiological recordings verified the inhibitory effect of the voltage-gated sodium channel current by the Li-DMN patch in vitro. A skin reaction to the edema test and histologic analysis of the rats' ears after application of the Li-DMN patch were negligible. Also, the application of the Li-DMN patch reduced the nocifensive behavior of the rats almost immediately. In conclusion, the dissolving microneedle patch with carboxymethyl cellulose is a promising candidate method for the painless delivery of lidocaine-HCl.

20.
Biomaterials ; 232: 119733, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31901501

RESUMEN

Recently, numerous transdermal drug delivery systems have been developed for safe and efficient delivery of biopharmaceuticals. Dissolving microneedles (DMNs) are one such drug delivery system, which have been developed to treat a variety of diseases in a minimally invasive manner. However, current DMN fabrication methods involve a reconstitution process of the therapeutics, which can result in degradation of the therapeutics or limited loading capacity for a reasonable application size. In the present study, we developed self-administrative powder-carrying microneedles (PCMs), lacking a reconstitution step, which implant insulin powder directly inside the skin without using a sticky patch. Compared with DMNs in the same geometries, the PCMs delivered the required dose in a more condensed form without considering insulin solubility and degradation during the fabrication process. Moreover, PCMs showed enhanced long-term stability and prolonged release kinetics, which could be utilized to treat diabetes without apparent safety issues. This implantable PCM technique will greatly impact the future of transdermal drug delivery systems because it is applicable to any type of therapeutic available in a dry powder formulation for a wide variety of biomedical applications.


Asunto(s)
Insulina , Agujas , Administración Cutánea , Sistemas de Liberación de Medicamentos , Microinyecciones , Polvos , Piel
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...