Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(3)2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38338668

RESUMEN

Non-alcoholic steatohepatitis (NASH) is an inflammatory form of non-alcoholic fatty liver disease (NAFLD), closely associated with disease progression, cirrhosis, liver failure, and hepatocellular carcinoma. Time-restricted feeding (TRF) has been shown to decrease body weight and adiposity and improve metabolic outcomes; however, the effect of TRF on NASH has not yet been fully understood. We had previously reported that inositol polyphosphate multikinase (IPMK) mediates hepatic insulin signaling. Importantly, we have found that TRF increases hepatic IPMK levels. Therefore, we investigated whether there is a causal link between TRF and IPMK in a mouse model of NASH, i.e., methionine- and choline-deficient diet (MCDD)-induced steatohepatitis. Here, we show that TRF alleviated markers of NASH, i.e., reduced hepatic steatosis, liver triglycerides (TG), serum alanine transaminase (ALT) and aspartate aminotransferase (AST), inflammation, and fibrosis in MCDD mice. Interestingly, MCDD led to a significant reduction in IPMK levels, and the deletion of hepatic IPMK exacerbates the NASH phenotype induced by MCDD, accompanied by increased gene expression of pro-inflammatory chemokines. Conversely, TRF restored IPMK levels and significantly reduced gene expression of proinflammatory cytokines and chemokines. Our results demonstrate that TRF attenuates MCDD-induced NASH via IPMK-mediated changes in hepatic steatosis and inflammation.


Asunto(s)
Deficiencia de Colina , Enfermedad del Hígado Graso no Alcohólico , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Metionina/metabolismo , Colina/metabolismo , Deficiencia de Colina/complicaciones , Deficiencia de Colina/metabolismo , Hígado/metabolismo , Racemetionina/metabolismo , Dieta , Inflamación/metabolismo , Quimiocinas/metabolismo , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad
2.
bioRxiv ; 2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-38014152

RESUMEN

Non-Alcoholic Steatohepatitis (NASH) is an inflammatory form of Non-Alcoholic Fatty Liver Disease (NAFLD), closely associated with disease progression, cirrhosis, liver failure, and hepatocellular carcinoma. Time-restricted feeding (TRF) has been shown to decrease body weight and adiposity and improve metabolic outcomes, however, the effect of TRF on NASH has not yet been fully understood. We had previously reported that inositol polyphosphate multikinase (IPMK) mediates hepatic insulin signaling. Importantly, we have found that TRF increases hepatic IPMK levels. Therefore, we investigated whether there is a causal link between TRF and IPMK in a mouse model of NASH, i.e., methionine and choline deficient diet (MCDD)-induced steatohepatitis. Here, we show that TRF alleviated markers of NASH, i.e., reduced hepatic steatosis, liver triglycerides (TG), serum alanine transaminase (ALT) and aspartate aminotransferase (AST), inflammation and fibrosis in MCDD mice. Interestingly, MCDD led to a significant reduction in IPMK levels, and the deletion of hepatic IPMK exacerbates the NASH phenotype induced by MCDD, accompanied by increased gene expression of pro-inflammatory chemokines. Conversely, TRF restored IPMK levels and significantly reduced gene expression of proinflammatory cytokines and chemokines. Our results demonstrate that TRF attenuates MCDD-induced NASH via IPMK-mediated changes in hepatic steatosis and inflammation.

3.
J Cell Biochem ; 124(11): 1695-1704, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37795573

RESUMEN

Insulin resistance is a critical mediator of the development of nonalcoholic fatty liver disease (NAFLD). An excess influx of fatty acids to the liver is thought to be a pathogenic cause of insulin resistance and the development of NAFLD. Although elevated levels of free fatty acids (FFA) in plasma contribute to inducing insulin resistance and NAFLD, the molecular mechanism is not completely understood. This study aimed to determine whether inositol polyphosphate multikinase (IPMK), a regulator of insulin signaling, plays any role in FFA-induced insulin resistance in primary hepatocytes. Here, we show that excess FFA decreased IPMK expression, and blockade of IPMK decrease attenuated the FFA-induced suppression of protein kinase B (Akt) phosphorylation in primary mouse hepatocytes (PMH). Moreover, overexpression of IPMK prevented the FFA-induced suppression of Akt phosphorylation by insulin, while knockout of IPMK exacerbated insulin resistance in PMH. In addition, treatment with MG132, a proteasomal inhibitor, inhibits FFA-induced decrease in IPMK expression and Akt phosphorylation in PMH. Furthermore, treatment with the antioxidant N-acetyl cysteine (NAC) significantly attenuated the FFA-induced reduction of IPMK and restored FFA-induced insulin resistance in PMH. In conclusion, our findings suggest that excess FFA reduces IPMK expression and contributes to the FFA-induced decrease in Akt phosphorylation in PMH, leading to insulin resistance. Our study highlights IPMK as a potential therapeutic target for preventing insulin resistance and NAFLD.


Asunto(s)
Resistencia a la Insulina , Enfermedad del Hígado Graso no Alcohólico , Ratones , Animales , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ácidos Grasos no Esterificados/farmacología , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Insulina/farmacología , Hepatocitos/metabolismo
4.
iScience ; 26(7): 107199, 2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37456841

RESUMEN

Maintenance of redox balance plays central roles in a plethora of signaling processes. Although physiological levels of reactive oxygen and nitrogen species are crucial for functioning of certain signaling pathways, excessive production of free radicals and oxidants can damage cell components. The nuclear factor erythroid 2-related factor 2 (Nrf2) signaling cascade is the key pathway that mediates cellular response to oxidative stress. It is controlled at multiple levels, which serve to maintain redox homeostasis within cells. We show here that inositol polyphosphate multikinase (IPMK) is a modulator of Nrf2 signaling. IPMK binds Nrf2 and attenuates activation and expression of Nrf2 target genes. Furthermore, depletion of IPMK leads to elevated glutathione and cysteine levels, resulting in increased resistance to oxidants. Accordingly, targeting IPMK may restore redox balance under conditions of cysteine and glutathione insufficiency.

5.
bioRxiv ; 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37162825

RESUMEN

Insulin resistance is a critical mediator of the development of non-alcoholic fatty liver disease (NAFLD). An excess influx of fatty acids to the liver is thought to be a pathogenic cause of insulin resistance and the development of non-alcoholic fatty liver disease (NAFLD). Although elevated levels of free fatty acids (FFA) in plasma contribute to inducing insulin resistance and NAFLD, the molecular mechanism is not completely understood. This study aimed to determine whether inositol polyphosphate multikinase (IPMK), a regulator of insulin signaling, plays any role in FFA-induced insulin resistance in primary hepatocytes. Here, we show that excess FFA decreased IPMK expression, and blockade of IPMK decrease attenuated the FFA-induced suppression of Akt phosphorylation in primary mouse hepatocytes (PMH). Moreover, overexpression of IPMK prevented the FFA-induced suppression of Akt phosphorylation by insulin, while knockout of IPMK exacerbated insulin resistance in PMH. In addition, treatment with MG132, a proteasomal inhibitor, inhibits FFA-induced decrease in IPMK expression and Akt phosphorylation in PMH. Furthermore, treatment with the antioxidant N-Acetyl Cysteine (NAC) significantly attenuated the FFA-induced reduction of IPMK and restored FFA-induced insulin resistance in PMH. In conclusion, our findings suggest that excess FFA reduces IPMK expression and contributes to the FFA-induced decrease in Akt phosphorylation in PMH, leading to insulin resistance. Our study highlights IPMK as a potential therapeutic target for preventing insulin resistance and NAFLD.

6.
J Cell Physiol ; 237(8): 3421-3432, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35822903

RESUMEN

Hepatic glucose production (HGP) is crucial for the maintenance of normal glucose homeostasis. Although hepatic insulin resistance contributes to excessive glucose production, its mechanism is not well understood. Here, we show that inositol polyphosphate multikinase (IPMK), a key enzyme in inositol polyphosphate biosynthesis, plays a role in regulating hepatic insulin signaling and gluconeogenesis both in vitro and in vivo. IPMK-deficient hepatocytes exhibit decreased insulin-induced activation of Akt-FoxO1 signaling. The expression of messenger RNA levels of phosphoenolpyruvate carboxykinase 1 (Pck1) and glucose 6-phosphatase (G6pc), key enzymes mediating gluconeogenesis, are increased in IPMK-deficient hepatocytes compared to wild type hepatocytes. Importantly, re-expressing IPMK restores insulin sensitivity and alleviates glucose production in IPMK-deficient hepatocytes. Moreover, hepatocyte-specific IPMK deletion exacerbates hyperglycemia and insulin sensitivity in mice fed a high-fat diet, accompanied by an increase in HGP during pyruvate tolerance test and reduction in Akt phosphorylation in IPMK deficient liver. Our results demonstrate that IPMK mediates insulin signaling and gluconeogenesis and may be potentially targeted for treatment of diabetes.


Asunto(s)
Glucosa , Resistencia a la Insulina , Insulina , Hígado , Fosfotransferasas (Aceptor de Grupo Alcohol) , Animales , Proteína Forkhead Box O1/metabolismo , Glucosa/metabolismo , Glucosa-6-Fosfatasa/metabolismo , Hepatocitos/metabolismo , Insulina/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Hígado/metabolismo , Ratones , Fosfoenolpiruvato Carboxiquinasa (GTP)/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo
7.
Sci Rep ; 9(1): 17839, 2019 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-31780766

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) is excessive fat build-up in the liver without alcohol consumption and includes hepatic inflammation and damage. Excessive influx of fatty acids to liver from circulation is thought to be a pathogenic cause for the development of NAFLD. Thus, inhibition of fatty acid intake into hepatocyte would be a maneuver for protection from high fat diet (HFD)-induced NAFLD. This study was initiated to determine whether sodium fluorocitrate (SFC) as a fatty acid uptake inhibitor could prevent palmitate-induced lipotoxicity in hepatocytes and protect the mice from HFD-induced NAFLD. SFC significantly inhibited the cellular uptake of palmitate in HepG2 hepatocytes, and thus prevented palmitate-induced fat accumulation and death in these cells. Single treatment with SFC reduced fasting-induced hepatic steatosis in C57BL/6J mice. Concurrent treatment with SFC for 15 weeks in HFD-fed C57BL/6J mice prevented HFD-induced fat accumulation and stress/inflammatory signal activation in the liver. SFC restored HFD-induced increased levels of serum alanine aminotransferase and aspartate aminotransferases as hepatic injury markers in these mice. SFC treatment also improved HFD-induced hepatic insulin resistance, and thus ameliorated HFD-induced hyperglycemia. In conclusion, inhibition of fatty acid mobilization into liver through SFC treatment can be a strategy to protect from HFD-induced NAFLD.


Asunto(s)
Citratos/uso terapéutico , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Ácido Palmítico/metabolismo , Alanina Transaminasa/sangre , Animales , Aspartato Aminotransferasas/sangre , Citratos/farmacología , Dieta Alta en Grasa/efectos adversos , Células Hep G2 , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Humanos , Resistencia a la Insulina , Masculino , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/etiología
8.
Sci Rep ; 7(1): 12916, 2017 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-29018279

RESUMEN

Beta cell loss and insulin resistance play roles in the pathogenesis of type 2 diabetes. Elevated levels of free fatty acids in plasma might contribute to the loss of beta cells. The objective of this study was to find a chemical that could protect against palmitate-induced beta cell death and investigate whether such chemical could improve hyperglycemia in mouse model of type 2 diabetes. Sodium fluorocitrate (SFC), an aconitase inhibitor, was found to be strongly and specifically protective against palmitate-induced INS-1 beta cell death. However, the protective effect of SFC on palmitate-induced cell death was not likely to be due to its inhibitory activity for aconitase since inhibition or knockdown of aconitase failed to protect against palmitate-induced cell death. Since SFC inhibited the uptake of palmitate into INS-1 cells, reduced metabolism of fatty acids was thought to be involved in SFC's protective effect. Ten weeks of treatment with SFC in db/db diabetic mice reduced glucose level but remarkably increased insulin level in the plasma. SFC improved impairment of glucose-stimulated insulin release and also reduced the loss of beta cells in db/db mice. Conclusively, SFC possessed protective effect against palmitate-induced lipotoxicity and improved hyperglycemia in mouse model of type 2 diabetes.


Asunto(s)
Citratos/uso terapéutico , Diabetes Mellitus Experimental/tratamiento farmacológico , Hiperglucemia/tratamiento farmacológico , Células Secretoras de Insulina/patología , Palmitatos/toxicidad , Sustancias Protectoras/uso terapéutico , Aconitato Hidratasa/antagonistas & inhibidores , Aconitato Hidratasa/metabolismo , Animales , Muerte Celular/efectos de los fármacos , Línea Celular , Citratos/farmacología , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/patología , Estrés del Retículo Endoplásmico/efectos de los fármacos , Hiperglucemia/complicaciones , Hiperglucemia/patología , Células Secretoras de Insulina/efectos de los fármacos , Masculino , Ratones Endogámicos C57BL , Palmitatos/metabolismo , Sustancias Protectoras/farmacología , Ratas
9.
Sci Rep ; 5: 37468, 2016 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-27874078

RESUMEN

Individuals with non-alcoholic fatty liver disease (NAFLD) and type 2 diabetes (T2D) induced by high calorie western diet are characterized by enhanced lipogenesis and gluconeogenesis in the liver. Stimulation of reductive amination may shift tricarboxylic acid cycle metabolism for lipogenesis and gluconeogenesis toward glutamate synthesis with increase of NAD+/NADH ratio and thus, ameliorate high calorie diet-induced fatty liver and hyperglycemia. Stimulation of reductive amination through glutamate dehydrogenase (GDH) activator 2-aminobicyclo-(2,2,1)-heptane-2-carboxylic acid (BCH) reduced both de novo lipogenesis and gluconeogenesis but increased the activities of sirtuins and AMP-activated kinase in primary hepatocytes. Long-term BCH treatment improved most metabolic alterations induced by high fat/high fructose (HF/HFr) diet in C57BL/6J mice. BCH prevented HF/HFr-induced fat accumulation and activation of stress/inflammation signals such as phospho-JNK, phospho-PERK, phospho-p38, and phospho-NFκB in liver tissues. Furthermore, BCH treatment reduced the expression levels of inflammatory cytokines such as TNF-α and IL-1ß in HF/HFr-fed mouse liver. BCH also reduced liver collagen and plasma levels of alanine transaminase and aspartate transaminase. On the other hand, BCH significantly improved fasting hyperglycemia and glucose tolerance in HF/HFr-fed mice. In conclusion, stimulation of reductive amination through GDH activation can be used as a strategy to prevent high calorie western diet-induced NAFLD and T2D.


Asunto(s)
Aminoácidos Cíclicos/farmacología , Grasas de la Dieta/efectos adversos , Azúcares de la Dieta/efectos adversos , Activadores de Enzimas/farmacología , Hígado Graso/prevención & control , Fructosa/efectos adversos , Glutamato Deshidrogenasa/metabolismo , Hiperglucemia/prevención & control , Aminación , Aminoácidos Cíclicos/administración & dosificación , Animales , Hígado Graso/metabolismo , Hiperglucemia/metabolismo , Lipogénesis , Masculino , Ratones Endogámicos C57BL
10.
Mol Cell Endocrinol ; 407: 74-84, 2015 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-25779532

RESUMEN

High levels of plasma free fatty acid are thought to contribute to the loss of pancreatic beta-cells in type 2 diabetes. In particular, saturated fatty acid such as palmitate or stearate can induce apoptosis in cultured beta cells (lipotoxicity). Endoplasmic reticulum stress is a critical mediator of free fatty acid-induced lipotoxicity. Recently, disorders in mitochondrial respiratory metabolism have been linked to lipotoxicity. Since iron is a critical component of respiratory metabolism, this study is initiated to determine whether abnormal iron metabolism is involved in palmitate-induced beta cell death. Immunoblotting analysis showed that treatment of INS-1 beta cells with palmitate reduced the level of transferrin receptor 1 (TfR1), but increased the level of heavy chain ferritin (FTH). In addition, palmitate reduced intracellular labile iron pool. Whereas iron depletion through treatment with iron-chelators deferoxamine or deferasirox augmented palmitate-induced cell death, iron supplementation with ferric chloride, ferrous sulfate, or holo-transferrin significantly protected cells against palmitate-induced death. Furthermore, overexpression of TfR1 reduced palmitate-induced cell death, whereas knockdown of TfR1 augmented cell death. In particular, treatment with deferoxamine increased the level of endoplasmic reticulum (ER) stress markers phospho-PERK, phospho-eIF2α, CHOP and phospho-c-Jun N-terminal kinase. Treatment with chemical chaperone significantly protected cells against deferoxamine-induced apoptosis. Iron supplementation also protected cells against palmitate-induced primary islet death. These data suggest that iron depletion plays an important role in palmitate-induced beta cell death through inducing ER stress. Therefore, attempts to block iron depletion might be able to prevent beta cell loss in type 2 diabetes.


Asunto(s)
Estrés del Retículo Endoplásmico/efectos de los fármacos , Células Secretoras de Insulina/efectos de los fármacos , Quelantes del Hierro/farmacología , Deficiencias de Hierro , Ácido Palmítico/toxicidad , Animales , Apoferritinas/genética , Apoferritinas/metabolismo , Benzoatos/farmacología , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Cloruros/farmacología , Deferasirox , Deferoxamina/farmacología , Estrés del Retículo Endoplásmico/genética , Factor 2 Eucariótico de Iniciación/genética , Factor 2 Eucariótico de Iniciación/metabolismo , Compuestos Férricos/farmacología , Compuestos Ferrosos/farmacología , Regulación de la Expresión Génica , Humanos , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/genética , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Ratas , Receptores de Transferrina/genética , Receptores de Transferrina/metabolismo , Transducción de Señal , Factor de Transcripción CHOP/genética , Factor de Transcripción CHOP/metabolismo , Transferrina/farmacología , Triazoles/farmacología , eIF-2 Quinasa/genética , eIF-2 Quinasa/metabolismo
11.
Mol Cell Endocrinol ; 383(1-2): 48-59, 2014 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-24333689

RESUMEN

This work was initiated to determine whether toxicity generated through inhibition of mitochondrial fuel metabolism is similar to high glucose/palmitate (HG/PA)-induced glucolipotoxicity. Influx of glucose and free fatty acids into the tricarboxylic acid (TCA) cycle was inhibited by treatment with the pyruvate carboxylase (PC) inhibitor phenylacetic acid (PAA) and carnitine palmitoyl transferase-1 (CPT-1) inhibitor etomoxir (Eto), or knockdown of PC and CPT-1. Treatment of PAA/Eto or knockdown of PC/CPT-1 induced apoptotic death in INS-1 beta cells. Similar to HG/PA treatment, PAA/Eto increased endoplasmic reticulum stress responses but decreased the Akt signal. JNK inhibitor or chemical chaperone was protective against both PAA/Eto- and HG/PA-induced cell death. All attempts to reduce [Ca²âº](i), stimulate lipid metabolism, and increase the TCA cycle intermediate pool protected PAA/Eto-induced death as well as HG/PA-induced death. These data suggest that signals induced from impaired mitochondrial fuel metabolism play a critical role in HG/PA-induced glucolipotoxicity.


Asunto(s)
Carnitina O-Palmitoiltransferasa/antagonistas & inhibidores , Glucosa/toxicidad , Células Secretoras de Insulina/efectos de los fármacos , Ácido Palmítico/toxicidad , Piruvato Carboxilasa/antagonistas & inhibidores , Animales , Apoptosis/efectos de los fármacos , Calcio/metabolismo , Carnitina O-Palmitoiltransferasa/genética , Carnitina O-Palmitoiltransferasa/metabolismo , Línea Celular Tumoral , Ciclo del Ácido Cítrico/efectos de los fármacos , Ciclo del Ácido Cítrico/genética , Estrés del Retículo Endoplásmico/genética , Compuestos Epoxi/farmacología , Regulación de la Expresión Génica , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/metabolismo , MAP Quinasa Quinasa 4/genética , MAP Quinasa Quinasa 4/metabolismo , Masculino , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Fenilacetatos/farmacología , Cultivo Primario de Células , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Piruvato Carboxilasa/genética , Piruvato Carboxilasa/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Ratas , Transducción de Señal
12.
Arch Biochem Biophys ; 535(2): 187-96, 2013 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-23562377

RESUMEN

This study was initiated to determine whether the protective effect of nicotinamide (NAM) on high glucose/palmitate (HG/PA)-induced INS-1 beta cell death was due to its role as an anti-oxidant, nicotinamide dinucleotide (NAD+) precursor, or inhibitor of NAD+-consuming enzymes such as poly (ADP-ribose) polymerase (PARP) or sirtuins. All anti-oxidants tested were not protective against HG/PA-induced INS-1 cell death. Direct supplementation of NAD+ or indirect supplementation through NAD+ salvage or de novo pathway did not protect the death. Knockdown of the NAD+ salvage pathway enzymes such as nicotinamide phosphoribosyl transferase (NAMPT) or nicotinamide mononucleotide adenyltransferase (NMNAT) did not augment death. On the other hand, pharmacological inhibition or knockdown of PARP did not affect death. However, sirtinol as an inhibitor of NAD-dependant deacetylase or knockdown of SIRT3 or SIRT4 significantly reduced the HG/PA-induced death. These data suggest that protective effect of NAM on beta cell glucolipotoxicity is attributed to its inhibitory activity on sirtuins.


Asunto(s)
Antioxidantes/farmacología , Glucosa/metabolismo , Células Secretoras de Insulina/efectos de los fármacos , Niacinamida/farmacología , Palmitatos/metabolismo , Sirtuinas/antagonistas & inhibidores , Acetilcisteína/farmacología , Animales , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Efrina-B2/metabolismo , Técnicas de Silenciamiento del Gen , Glucosa/toxicidad , Glutatión/farmacología , Células Secretoras de Insulina/citología , MAP Quinasa Quinasa 4/metabolismo , NAD/metabolismo , NAD/farmacología , Palmitatos/toxicidad , Fosforilación , Poli Adenosina Difosfato Ribosa/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Sirtuina 3/antagonistas & inhibidores , Sirtuina 3/genética , Sirtuina 3/metabolismo , Sirtuinas/genética , Sirtuinas/metabolismo , Factor de Transcripción CHOP/metabolismo
13.
Eur J Pharmacol ; 696(1-3): 187-93, 2012 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-23026370

RESUMEN

Loss of beta cells is a pathogenic cause for the development of type 2 diabetes. High glucose/free fatty acid (HG/FFA)-induced glucolipotoxicity was thought to play a role in the beta cell loss. Thus, application of small molecules capable of preventing HG/FFA-induced glucolipotoxicty to beta cells could be an avenue for a therapeutic intervention for the development of type 2 diabetes. We screened a representative library supplied from Korean Chemical Bank for prevention of high glucose/palmitate (HG/PA)-induced viability reduction of INS-1 beta cells and were able to identify a new small molecule (DW1182v) with a function to protect HG/PA-induced glucolipotoxicity. The protective effect was specific to HG/PA-induced beta cell death since DW1182v did not protect streptozotocin- or cytokine-induced INS-1 cell death. The protective effect by DW1182v was likely due to the reduction of death-promoting endoplasmic reticulum (ER) stress responses such as phospho-C-Jun N-terminal kinase (JNK) and C/EBP homologous protein (CHOP). Treatment of obese diabetic db/db mice with DW1182v preserved islet integrity and thus increased insulin secretion and lowered blood glucose after glucose infusion. These results suggest that a small molecule protecting HG/PA-induced glucolipotoxicity to beta cells can be a new therapeutic candidate to prevent the development of type 2 diabetes.


Asunto(s)
Hipoglucemiantes/farmacología , Indazoles/farmacología , Células Secretoras de Insulina/efectos de los fármacos , Pirimidinas/farmacología , Animales , Glucemia/análisis , Línea Celular , Supervivencia Celular/efectos de los fármacos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Glucosa/farmacología , Prueba de Tolerancia a la Glucosa , Hiperglucemia/sangre , Hiperglucemia/tratamiento farmacológico , Hiperglucemia/patología , Hipoglucemiantes/uso terapéutico , Indazoles/uso terapéutico , Insulina/sangre , Masculino , Ratones , Ratones Obesos , Obesidad/sangre , Obesidad/tratamiento farmacológico , Obesidad/patología , Palmitatos/farmacología , Pirimidinas/uso terapéutico
14.
Mol Cell Biochem ; 354(1-2): 207-17, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21503675

RESUMEN

Fatty acid-induced cytotoxicity is believed to recapitulate lipotoxicity seen in obese type-2 diabetes, and, thus, contribute to beta cell loss in the disease. These studies were initiated to determine whether the Toll-like receptor (TLR) signaling pathway was involved in palmitate-induced beta cell death. Treatment of INS-1 beta cells with palmitate enhanced interaction between TLR and myeloid differentiation factor88 (MyD88). Concomitant with TLR/MyD88 interaction, the level of phospho-C-Jun N-terminal kinase (phospho-JNK) showed an increase; however, the level of inhibitory factor kappa B alpha (IκBα) showed a decrease. Gene knockdown of TLR4 prevented palmitate-induced INS-1 cell death, while knockdown of TLR2 did not. In addition, gene knockdown of TLR4 prevented palmitate-induced increase of phospho-JNK and decrease of IκBα. JNK inhibitor SP60125 significantly protected against palmitate-induced INS-1 cell death, while IκB kinase (IKK) inhibitor acetylsalicylate did not. These data suggest involvement of JNK activation through the TLR4 signaling pathway in palmitate-induced INS-1 beta cell death.


Asunto(s)
Apoptosis , Células Secretoras de Insulina/efectos de los fármacos , Transducción de Señal , Receptor Toll-Like 4/metabolismo , Animales , Caspasa 3/metabolismo , Línea Celular Tumoral , Fragmentación del ADN , Activación Enzimática , Proteínas I-kappa B/metabolismo , Inmunoprecipitación , Células Secretoras de Insulina/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Lipopéptidos/farmacología , Factor 88 de Diferenciación Mieloide/metabolismo , Palmitatos , Fosfoproteínas/metabolismo , Poli(ADP-Ribosa) Polimerasa-1 , Poli(ADP-Ribosa) Polimerasas/metabolismo , Unión Proteica , Interferencia de ARN , Ratas , Receptor Toll-Like 2/agonistas , Receptor Toll-Like 2/genética , Receptor Toll-Like 2/metabolismo , Receptor Toll-Like 4/genética
15.
Endocrinology ; 152(3): 816-27, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21209018

RESUMEN

Saturated fatty acids are generally cytotoxic to ß-cells. Accumulation of lipid intermediates and subsequent activation of lipid-mediated signals has been suggested to play a role in fatty acid-induced toxicity. To determine the effects of lipid metabolism in fatty acid-induced toxicity, lipid metabolism was modulated by up- and down-regulation of a lipogenic or fatty acid oxidation pathway, and the effects of various modulators on palmitate (PA)-induced INS-1 ß-cell death were then evaluated. Treatment with the liver X receptor agonist T0901317 reduced PA-induced INS-1 cell death, regardless of its enhanced lipogenic activity. Furthermore, transient expression of a lipogenic transcription factor sterol regulatory element binding protein-1c (SREBP-1c) was also protective against PA-induced cytotoxicity. In contrast, knockdown of SREBP-1c or glycerol-3-phosphate acyltransferase 1 significantly augmented PA-induced cell death and reduced T0901317-induced protective effects. Conversely, T0901317 increased carnitine PA transferease-1 (CPT-1) expression and augmented PA oxidation. CPT-1 inhibitor etomoxir or CPT-1 knockdown augmented PA-induced cell death and reduced T0901317-induced protective effects, whereas the peroxisome proliferator-activated receptor (PPAR)-α agonist bezafibrate reduced PA-induced toxicity. In particular, T0901317 reduced the levels of PA-induced endoplasmic reticulum (ER) stress markers, including phospho-eukaryotic initiation factor-2α, phospho-C-Jun N terminal kinase, and CCAAT/enhancer-binding protein homologous protein. In contrast, knockdown of SREBP-1c or glycerol-3-phosphate acyltransferase 1 augmented PA-induced ER stress responses. Results of these experiments suggested that stimulation of lipid metabolism, including lipogenesis and fatty acid oxidation, protected ß-cells from PA-induced lipotoxicity and that protection through enhanced lipogenesis was likely due to reduced ER stress.


Asunto(s)
Ácidos Grasos/metabolismo , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/fisiología , Lipogénesis/efectos de los fármacos , Palmitatos/farmacología , Animales , Células Cultivadas , Retículo Endoplásmico , Metabolismo de los Lípidos , Receptores X del Hígado , Receptores Nucleares Huérfanos/agonistas , Oxidación-Reducción , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA