Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Microb Cell Fact ; 23(1): 147, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38783320

RESUMEN

Aminopyrrolnitrin (APRN), a natural halogenated phenylpyrrole derivative (HPD), has strong antifungal and antiparasitic activities. Additionally, it showed 2.8-fold increased photostability compared to pyrrolnitrin, a commercially available HPD with antimicrobial activity. For microbial production of APRN, we first engineered anthranilate phosphoribosyltransferase encoded by trpD from Corynebacterium glutamicum, resulting in a TrpDA162D mutation that exhibits feedback-resistant against L-tryptophan and higher substrate affinity compared to wild-type TrpD. Plasmid-borne expression of trpDA162D in C. glutamicum TP851 strain with two copies of trpDA162D in the genome led to the production of 3.1 g/L L-tryptophan in flask culture. Subsequent step for L-tryptophan chlorination into 7-chloro-L-tryptophan was achieved by introducing diverse sources of genes encoding tryptophan 7-halogenase (PrnA or RebH) and flavin reductase (Fre, PrnF, or RebF). The combined expression of prnA from Serratia grimesii or Serratia plymuthica with flavin reductase gene from Escherichia coli, Pseudomonas fluorescens, or Lechevalieria aerocolonigenes yielded higher production of 7-chloro-L-tryptophan in comparison to other sets of two-component systems. In the next step, production of putative monodechloroaminopyrrolnitrin (MDAP) from 7-chloro-L-tryptophan was achieved through the expression of prnB encoding MDAP synthase from S. plymuthica or P. fluorescens. Finally, an artificial APRN biosynthetic pathway was constructed by simultaneously expressing genes coding for tryptophan 7-halogenase, flavin reductase, MDAP synthase, and MDAP halogenase (PrnC) from different microbial sources within the L-tryptophan-producing TP851 strain. As prnC from S. grimesii or S. plymuthica was introduced into the host strain, which carried plasmids expressing prnA from S. plymuthica, fre from E. coli, and prnB from S. plymuthica, APN3639 and APN3638 accumulated 29.5 mg/L and 28.1 mg/L of APRN in the culture broth. This study represents the first report on the fermentative APRN production by metabolically engineered C. glutamicum.


Asunto(s)
Corynebacterium glutamicum , Ingeniería Metabólica , Corynebacterium glutamicum/metabolismo , Corynebacterium glutamicum/genética , Ingeniería Metabólica/métodos , Pirrolnitrina/biosíntesis , Pirrolnitrina/metabolismo , Fermentación , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Triptófano/biosíntesis , Triptófano/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Oxidorreductasas
2.
Genome Biol ; 24(1): 4, 2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36627653

RESUMEN

We present a novel genome-wide off-target prediction method named Extru-seq and compare it with cell-based (GUIDE-seq), in vitro (Digenome-seq), and in silico methods using promiscuous guide RNAs with large numbers of valid off-target sites. Extru-seq demonstrates a high validation rate and retention of information about the intracellular environment, both beneficial characteristics of cell-based methods. Extru-seq also shows a low miss rate and could easily be performed in clinically relevant cell types with little optimization, which are major positive features of the in vitro methods. In summary, Extru-seq shows beneficial features of cell-based and in vitro methods.


Asunto(s)
Sistemas CRISPR-Cas , Genoma , Edición Génica , ARN Guía de Sistemas CRISPR-Cas
3.
Nucleic Acids Res ; 47(22): 11880-11888, 2019 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-31713616

RESUMEN

Cas9 has made a wide range of genomic manipulation possible. However, its specificity continues to be a challenge. Non-canonical gRNAs and new engineered variants of Cas9 have been developed to improve specificity, but at the cost of the on-target activity. DNA unwinding is a checkpoint before cleavage by Cas9, and was shown to be made more sensitive to sequence mismatches by specificity-enhancing mutations in engineered Cas9s. Here we performed single-molecule FRET-based DNA unwinding experiments using various combinations of non-canonical gRNAs and different Cas9s. All engineered Cas9s were less promiscuous than wild type when canonical gRNA was used, but HypaCas9 had much-reduced on-target unwinding. Cas9-HF1 and eCas9 showed the best balance between low promiscuity and high on-target activity with canonical gRNA. When extended gRNAs with one or two non-matching guanines added to the 5' end were used, Sniper1-Cas9 showed the lowest promiscuity while maintaining high on-target activity. Truncated gRNA generally reduced unwinding and adding a non-matching guanine to the 5' end of gRNA influenced unwinding in a sequence-context dependent manner. Our results are consistent with cell-based cleavage data and provide a mechanistic understanding of how various Cas9/gRNA combinations perform in genome engineering.


Asunto(s)
Proteína 9 Asociada a CRISPR/fisiología , División del ADN , ADN/química , ADN/metabolismo , Mutación con Ganancia de Función , ARN Guía de Kinetoplastida/farmacología , Proteína 9 Asociada a CRISPR/genética , Proteína 9 Asociada a CRISPR/metabolismo , ADN/efectos de los fármacos , ADN Helicasas/fisiología , Edición Génica/métodos , Conformación de Ácido Nucleico/efectos de los fármacos , Ingeniería de Proteínas , ARN Guía de Kinetoplastida/análisis , ARN Guía de Kinetoplastida/metabolismo , Imagen Individual de Molécula , Streptococcus pyogenes/enzimología , Streptococcus pyogenes/genética , Especificidad por Sustrato/efectos de los fármacos , Especificidad por Sustrato/genética
4.
J Vis Exp ; (144)2019 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-30882797

RESUMEN

The development of clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (Cas9) into therapeutic modalities requires the avoidance of its potentially deleterious off-target effects. Several methods have been devised to reduce such effects. Here, we present an Escherichia coli-based directed evolution method called Sniper-screen to obtain a Cas9 variant with optimized specificity and retained on-target activity, called Sniper-Cas9. Using Sniper-screen, positive and negative selection can be performed simultaneously. The screen can also be repeated with other single-guide RNA (sgRNA) sequences to enrich for the true positive hits. By using the CMV-PltetO1 dual promoter to express Cas9 variants, the performance of the pooled library can be quickly checked in mammalian cells. Methods to increase the specificity of Sniper-Cas9 are also described. First, the use of truncated sgRNAs has previously been shown to increase Cas9 specificity. Unlike other engineered Cas9s, Sniper-Cas9 retains a wild-type (WT) level of on-target activity when combined with truncated sgRNAs. Second, the delivery of Sniper-Cas9 in a ribonucleoprotein (RNP) format instead of a plasmid format is possible without affecting its on-target activity.


Asunto(s)
Sistemas CRISPR-Cas/genética , Biblioteca de Genes , Humanos
5.
Nat Protoc ; 13(12): 2844-2863, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30390050

RESUMEN

The CRISPR-Cas9 genome-editing tool and the availability of whole-genome sequences from plant species have revolutionized our ability to introduce targeted mutations into important crop plants, both to explore genetic changes and to introduce new functionalities. Here, we describe protocols adapting the CRISPR-Cas9 system to apple and grapevine plants, using both plasmid-mediated genome editing and the direct delivery of CRISPR-Cas9 ribonucleoproteins (RNPs) to achieve efficient DNA-free targeted mutations in apple and grapevine protoplasts. We provide a stepwise protocol for the design and transfer of CRISPR-Cas9 components to apple and grapevine protoplasts, followed by verification of highly efficient targeted mutagenesis, and regeneration of plants following the plasmid-mediated delivery of components. Our plasmid-mediated procedure and the direct delivery of CRISPR-Cas9 RNPs can both be utilized to modulate traits of interest with high accuracy and efficiency in apple and grapevine, and could be extended to other crop species. The complete protocol employing the direct delivery of CRISPR-Cas9 RNPs takes as little as 2-3 weeks, whereas the plasmid-mediated procedure takes >3 months to regenerate plants and study the mutations.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica/métodos , Malus/genética , Mutagénesis , Vitis/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Genoma de Planta , Mutación , Plantas Modificadas Genéticamente/genética , Plásmidos/genética
6.
Nat Commun ; 9(1): 3048, 2018 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-30082838

RESUMEN

The use of CRISPR-Cas9 as a therapeutic reagent is hampered by its off-target effects. Although rationally designed S. pyogenes Cas9 (SpCas9) variants that display higher specificities than the wild-type SpCas9 protein are available, these attenuated Cas9 variants are often poorly efficient in human cells. Here, we develop a directed evolution approach in E. coli to obtain Sniper-Cas9, which shows high specificities without killing on-target activities in human cells. Unlike other engineered Cas9 variants, Sniper-Cas9 shows WT-level on-target activities with extended or truncated sgRNAs with further reduced off-target activities and works well in a preassembled ribonucleoprotein (RNP) format to allow DNA-free genome editing.


Asunto(s)
Sistemas CRISPR-Cas , Evolución Molecular Dirigida , ADN/genética , Escherichia coli/genética , Edición Génica , Células HEK293 , Humanos , Plásmidos/metabolismo , ARN Guía de Kinetoplastida/genética , Proteínas Recombinantes/química , Ribonucleoproteínas/química , Especificidad por Sustrato
7.
Front Plant Sci ; 7: 1904, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28066464

RESUMEN

The combined availability of whole genome sequences and genome editing tools is set to revolutionize the field of fruit biotechnology by enabling the introduction of targeted genetic changes with unprecedented control and accuracy, both to explore emergent phenotypes and to introduce new functionalities. Although plasmid-mediated delivery of genome editing components to plant cells is very efficient, it also presents some drawbacks, such as possible random integration of plasmid sequences in the host genome. Additionally, it may well be intercepted by current process-based GMO regulations, complicating the path to commercialization of improved varieties. Here, we explore direct delivery of purified CRISPR/Cas9 ribonucleoproteins (RNPs) to the protoplast of grape cultivar Chardonnay and apple cultivar such as Golden delicious fruit crop plants for efficient targeted mutagenesis. We targeted MLO-7, a susceptible gene in order to increase resistance to powdery mildew in grape cultivar and DIPM-1, DIPM-2, and DIPM-4 in the apple to increase resistance to fire blight disease. Furthermore, efficient protoplast transformation, the molar ratio of Cas9 and sgRNAs were optimized for each grape and apple cultivar. The targeted mutagenesis insertion and deletion rate was analyzed using targeted deep sequencing. Our results demonstrate that direct delivery of CRISPR/Cas9 RNPs to the protoplast system enables targeted gene editing and paves the way to the generation of DNA-free genome edited grapevine and apple plants.

8.
Jpn J Infect Dis ; 61(6): 457-60, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19050354

RESUMEN

To determine the vaccination rate and its adverse reactions after influenza vaccination, we administered an anonymous questionnaire survey during the last three influenza seasons from 2005-2006 to 2007-2008. In total, the rate of Influenza vaccination was 82.3% in health-care personnel. Dividing the subjects into four groups by work category, the vaccine coverage rates were as follows: physicians 67.9%; nurses and nursing assistants 91.2%; technicians, pharmacists, therapists, and administrative personnel 80.2%; and other personnel not directly involved in patient care but having the potential of being exposed to infectious agents 89%. The most frequent adverse reaction after vaccination was soreness at the injection site in 33.4%, followed by skin redness in 18.1%, myalgia in 17.7%, fatigue in 17%, and febrile sensation in 15.2%. After vaccination, such adverse reactions began within 24 h in 70.6% of subjects. Eighty-nine percent of those adverse reactions persisted for 1-3 days, but 11% persisted more than 4 days. Serious adverse reactions were not noted; the reported adverse reactions were relatively minor and transient. Surprisingly, among those who were vaccinated, the physicians' participation was the lowest. We believe that influenza vaccination is safe and that physicians should be more concerned with influenza vaccination and its impact on the health-care community.


Asunto(s)
Vacunas contra la Influenza/administración & dosificación , Vacunas contra la Influenza/efectos adversos , Gripe Humana/prevención & control , Personal de Hospital , Vacunación/efectos adversos , Vacunación/estadística & datos numéricos , Hospitales Universitarios , Humanos , Subtipo H1N1 del Virus de la Influenza A/inmunología , Subtipo H3N2 del Virus de la Influenza A/inmunología , Virus de la Influenza B/inmunología , Corea (Geográfico) , Encuestas y Cuestionarios
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...