Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Chem ; 11: 1178787, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37214487

RESUMEN

The weight reduction of the bipolar plate (BP) is essential for commercializing unitized regenerative fuel cells (URFCs). In order to lighten the weight of the bipolar plate, we have used Pb/C composite powder as a cost-effective primary material, which is a mixture of low-density graphite and lead. Further, varied lead-carbon weight ratios (1: 8, 1:4, 1:1, 4:1, and 8:1) were investigated for fabricating the bipolar plate by hot-pressing process adding styrene-butadiene rubber (SBR) as a binder. The specific surface area, porosity, and microstructure characteristics corresponding to the varied lead-graphite ratio of the prepared bipolar plates were studied. The relative difference in conductivity upon the compressibility of the plates is also examined. Finally, the wettability and electrochemical properties of the prepared bipolar plates were evaluated through water contact angle and cyclic voltammetry analysis.

2.
Membranes (Basel) ; 13(4)2023 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-37103802

RESUMEN

A transient inline spiking system is a promising tool for evaluating the performance of a virus filter in continuous operation. For better implementation of the system, we performed a systematic analysis to understand the residence time distribution (RTD) of inert tracers in the system. We aimed to understand the RTD of a salt spike, not retained onto or within the membrane pore, to focus on its mixing and spreading within the processing units. A concentrated NaCl solution was spiked into a feed stream as the spiking duration (tspike) was varied from 1 to 40 min. A static mixer was employed to mix the salt spike with the feed stream, which then passed through a single-layered nylon membrane inserted in a filter holder. The RTD curve was obtained by measuring the conductivity of the collected samples. An analytical model, the PFR-2CSTR model, was employed to predict the outlet concentration from the system. The slope and peak of the RTD curves were well-aligned with the experimental findings when τPFR = 4.3 min, τCSTR1 = 4.1 min, and τCSTR2 = 1.0 min. CFD simulations were performed to describe the flow and transport of the inert tracers through the static mixer and the membrane filter. The RTD curve spanned more than 30 min, much longer than tspike, since solutes were dispersed within processing units. The flow characteristics in each processing unit correlated with the RTD curves. Our detailed analysis of the transient inline spiking system would be helpful for implementing this protocol in continuous bioprocessing.

3.
Langmuir ; 38(19): 6013-6022, 2022 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-35507428

RESUMEN

Clogging is ubiquitous. It happens in a wide range of material processing and causes severe performance degradation or process breakdown. In this study, we investigate clogging dynamics in a single micropore by controlling the surface property of the particle and processing condition. Microfluidic observation is conducted to investigate particle deposition in a contraction microchannel where polystyrene suspension is injected as a feed solution. The particle deposition area is quantified using the images taken using a CCD camera in both upstream and downstream of the microchannel. Pressure drop across the microchannel is also measured. When the particle interaction is repulsive, the deposition occurs mostly in downstream, while an opposite tendency is identified when the particle interaction is attractive. More complex deposition characteristics are found as the flow rate is changed. Particle flux density and the ratio of lift force to colloidal force are introduced to explain the clogging dynamics. This study provides a useful insight to alleviate clogging issues by controlling the colloidal interaction and hydrodynamic stress.

4.
Biotechnol Bioeng ; 119(8): 2134-2141, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35470427

RESUMEN

The development of continuous/connected bioprocesses requires new approaches for viral clearance validation, both for specific unit operations and for the overall process. In this study, we have developed a transient inline spiking system that can be used to evaluate virus clearance at distinct time points during prolonged operation of continuous bioprocesses. The proof of concept for this system was demonstrated by evaluating the viral clearance for a virus filtration step, both with and without a prefilter upstream of the virus filter. The residence time distribution was evaluated using a previously identified noninteracting fluorescent tracer, while viral clearance was evaluated from measurements of the virus titer in samples obtained downstream of the virus filter. The measured log reduction values (LRV) for ϕX174, minute virus of mice, xenotropic murine leukemia virus, and a noninfectious mock virus particle were all within 0.5 log of those obtained using a traditional batch virus challenge for both model and real-world process streams (LRV between 2.2 and 3.4 for ϕX174 using a single layer of virus filter). The results demonstrate the effectiveness of transient inline spiking to validate the virus clearance capabilities in continuous bioprocessing, an essential element for the adoption of these processes for products made using mammalian cell lines.


Asunto(s)
Filtración , Virus , Animales , Cinética , Virus de la Leucemia Murina , Mamíferos , Ratones , Virión
5.
Membranes (Basel) ; 11(10)2021 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-34677490

RESUMEN

Fouling mitigation using chaotic advection caused by herringbone-shaped grooves in a flat membrane module is numerically investigated. The feed flow is laminar with the Reynolds number (Re) ranging from 50 to 500. In addition, we assume a constant permeate flux on the membrane surface. Typical flow characteristics include two counter-rotating flows and downwelling flows, which are highly influenced by the groove depth at each Re. Poincaré sections are plotted to represent the dynamical systems of the flows and to analyze mixing. The flow systems become globally chaotic as the groove depth increases above a threshold value. Fouling mitigation via chaotic advection is demonstrated using the dimensionless average concentration (c¯w*) on the membrane and its growth rate. When the flow system is chaotic, the growth rate of c¯w* drops significantly compared to that predicted from the film theory, demonstrating that chaotic advection is an attractive hydrodynamic technique that mitigates membrane fouling. At each Re, there exists an optimal groove depth minimizing c¯w* and the growth rate of c¯w*. Under the optimum groove geometry, foulants near the membrane are transported back to the bulk flow via the downwelling flows, distributed uniformly in the entire channel via chaotic advection.

6.
Micromachines (Basel) ; 10(12)2019 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-31801229

RESUMEN

In this study, we report on a numerical study on design optimization for a microfluidic crossflow filtration system incorporated with the staggered herringbone micromixer (SHM). Computational fluid dynamics (CFD) and the Taguchi method were employed to find out an optimal set of design parameters, mitigating fouling in the filtration system. The flow and the mass transfer characteristics in a reference SHM model and a plain rectangular microchannel were numerically investigated in detail. Downwelling flows in the SHM model lead to backtransport of foulants from the permeable wall, which slows down the development of the concentration boundary layer in the filtration system. Four design parameters - the number of grooves, the groove depth, the interspace between two neighboring grooves, and the interspace between half mixing periods - were chosen to construct a set of numerical experiments using an orthogonal array from the Taguchi method. The Analysis of Variance (ANOVA) using the evaluated signal-to-noise (SN) ratios enabled us to identify the contribution of each design parameter on the performance. The proposed optimal SHM model indeed showed the lowest growth rate of the wall concentration compared to other SHM models.

7.
ACS Nano ; 9(10): 10186-202, 2015 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-26361723

RESUMEN

Coculturing stem cells with the desired cell type is an effective method to promote the differentiation of stem cells. The features of the membrane used for coculturing are crucial to achieving the best outcome. Not only should the membrane act as a physical barrier that prevents the mixing of the cocultured cell populations, but it should also allow effective interactions between the cells. Unfortunately, conventional membranes used for coculture do not sufficiently meet these requirements. In addition, cell harvesting using proteolytic enzymes following coculture impairs cell viability and the extracellular matrix (ECM) produced by the cultured cells. To overcome these limitations, we developed nanothin and highly porous (NTHP) membranes, which are ∼20-fold thinner and ∼25-fold more porous than the conventional coculture membranes. The tunable pore size of NTHP membranes at the nanoscale level was found crucial for the formation of direct gap junctions-mediated contacts between the cocultured cells. Differentiation of the cocultured stem cells was dramatically enhanced with the pore size-customized NTHP membrane system compared to conventional coculture methods. This was likely due to effective physical contacts between the cocultured cells and the fast diffusion of bioactive molecules across the membrane. Also, the thermoresponsive functionality of the NTHP membranes enabled the efficient generation of homogeneous, ECM-preserved, highly viable, and transfer-printable sheets of cardiomyogenically differentiated cells. The coculture platform developed in this study would be effective for producing various types of therapeutic multilayered cell sheets that can be differentiated from stem cells.


Asunto(s)
Técnicas de Cocultivo/instrumentación , Membranas Artificiales , Células Madre Mesenquimatosas/citología , Mioblastos/citología , Nanoestructuras/química , Animales , Bioimpresión/instrumentación , Diferenciación Celular , Línea Celular , Humanos , Nanoestructuras/ultraestructura , Porosidad , Ratas , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...