Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
Ann N Y Acad Sci ; 1537(1): 74-81, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38963660

RESUMEN

This study explores the impact of feathers on the hydrodynamic drag experienced by diving birds, which is critical to their foraging efficiency and survival. Employing a novel experimental approach, we analyzed the kinematics of both feathered and nonfeathered projectiles during their transition from air to water using high-speed imaging and an onboard accelerometer. The drag coefficients were determined through two methods: a direct calculation from the acceleration data and a theoretical approach fitted to the observed velocity profiles. Our results indicate that feathers significantly increase the drag force during water entry, with feathered projectiles exhibiting approximately double the drag coefficient of their smooth counterparts. These findings provide new insights into the role of avian feather morphology in diving mechanics and have potential implications for the design of bioinspired aquatic vehicles in engineering. The study also discusses the biological implications of increased drag due to feathers and suggests that factors such as body shape might play a more critical role in the diving capabilities of birds than previously understood.


Asunto(s)
Aves , Buceo , Plumas , Hidrodinámica , Plumas/fisiología , Plumas/anatomía & histología , Animales , Buceo/fisiología , Aves/fisiología , Fenómenos Biomecánicos
3.
Proc Natl Acad Sci U S A ; 121(19): e2321179121, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38683988

RESUMEN

Certain fox species plunge-dive into snow to catch prey (e.g., rodents), a hunting mechanism called mousing. Red and arctic foxes can dive into snow at speeds ranging between 2 and 4 m/s. Such mousing behavior is facilitated by a slim, narrow facial structure. Here, we investigate how foxes dive into snow efficiently by studying the role of skull morphology on impact forces it experiences. In this study, we reproduce the mousing behavior in the lab using three-dimensional (3D) printed fox skulls dropped into fresh snow to quantify the dynamic force of impact. Impact force into snow is modeled using hydrodynamic added mass during the initial impact phase. This approach is based on two key facts: the added mass effect in granular media at high Reynolds numbers and the characteristics of snow as a granular medium. Our results show that the curvature of the snout plays a critical role in determining the impact force, with an inverse relationship. A sharper skull leads to a lower average impact force, which allows foxes to dive head-first into the snow with minimal tissue damage.


Asunto(s)
Zorros , Cráneo , Nieve , Animales , Zorros/anatomía & histología , Zorros/fisiología , Cráneo/anatomía & histología , Buceo/fisiología , Conducta Predatoria/fisiología
4.
PNAS Nexus ; 3(3): pgae110, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38516273

RESUMEN

Recent advances in passive flying systems inspired by wind-dispersed seeds contribute to increasing interest in their use for remote sensing applications across large spatial domains in the Lagrangian frame of reference. These concepts create possibilities for developing and studying structures with performance characteristics and operating mechanisms that lie beyond those found in nature. Here, we demonstrate a hybrid flier system, fabricated through a process of controlled buckling, to yield unusual geometries optimized for flight. Specifically, these constructs simultaneously exploit distinct fluid phenomena, including separated vortex rings from features that resemble those of dandelion seeds and the leading-edge vortices derived from behaviors of maple seeds. Advanced experimental measurements and computational simulations of the aerodynamics and induced flow physics of these hybrid fliers establish a concise, scalable analytical framework for understanding their flight mechanisms. Demonstrations with functional payloads in various forms, including bioresorbable, colorimetric, gas-sensing, and light-emitting platforms, illustrate examples with diverse capabilities in sensing and tracking.

5.
Sci Adv ; 10(5): eadj8092, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38295175

RESUMEN

The dispersion of plant pathogens, such as rust spores, is responsible for more than 20% of global crop yield loss annually. However, the release mechanism of pathogens from flexible plant surfaces into the canopy is not well understood. In this study, we investigated the interplay between leaf elasticity and rainfall, revealing how a flexible leaf structure can generate a lateral flow stream, with embedded coherent structures that enhance transport. We first modeled the linear coupling between drop momentum, leaf vibration, and the stream flux from leaf surfaces. With Lagrangian diagnostics, we further mapped out the nested coherent structures around the fluttering profile, providing a dynamical description for local spore delivery. We hope the mechanistic details extracted here can facilitate the construction of physically informed analytical models for local crop disease management.


Asunto(s)
Basidiomycota , Enfermedades de las Plantas , Esporas Fúngicas , Hojas de la Planta , Plantas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...