RESUMEN
Monocrystalline chalcogenide thin films in freestanding forms are very much needed in advanced electronics such as flexible phase change memories (PCMs). However, they are difficult to manufacture in a scalable manner due to their growth and delamination challenges. Herein, we report a viable strategy for a wafer-scale epitaxial growth of monocrystalline germanium telluride (GeTe) membranes and their deterministic integrations onto flexible substrates. GeTe films are epitaxially grown on Ge wafers via a tellurization reaction accompanying a formation of confined dislocations along GeTe/Ge interfaces. The as-grown films are subsequently delaminated off the wafers, preserving their wafer-scale structural integrity, enabled by a strain-engineered spalling method that leverages the stress-concentrated dislocations. The versatility of this wafer epitaxy and delamination approach is further expanded to manufacture other chalcogenide membranes, such as germanium selenide (GeSe). These materials exhibit phase change-driven electrical switching characteristics even in freestanding forms, opening up unprecedented opportunities for flexible PCM technologies.
RESUMEN
Electronic devices employing two-dimensional (2D) van der Waals (vdW) transition-metal dichalcogenide (TMD) layers as semiconducting channels often exhibit limited performance (e.g., low carrier mobility), in part, due to their high contact resistances caused by interfacing non-vdW three-dimensional (3D) metal electrodes. Herein, we report that this intrinsic contact issue can be efficiently mitigated by forming the 2D/2D in-plane junctions of 2D semiconductor channels seamlessly interfaced with 2D metal electrodes. For this, we demonstrated the selectively patterned conversion of semiconducting 2D PtSe2 (channels) to metallic 2D PtTe2 (electrodes) layers by employing a wafer-scale low-temperature chemical vapor deposition (CVD) process. We investigated a variety of field-effect transistors (FETs) employing wafer-scale CVD-2D PtSe2/2D PtTe2 heterolayers and identified that silicon dioxide (SiO2) top-gated FETs exhibited an extremely high hole mobility of â¼120 cm2 V-1 s-1 at room temperature, significantly surpassing performances with previous wafer-scale 2D PtSe2-based FETs. The low-temperature nature of the CVD method further allowed for the direct fabrication of wafer-scale arrays of 2D PtSe2/2D PtTe2 heterolayers on polyamide (PI) substrates, which intrinsically displayed optical pulse-induced artificial synaptic behaviors. This study is believed to vastly broaden the applicability of 2D TMD layers for next-generation, high-performance electronic devices with unconventional functionalities.
RESUMEN
Prevailing over the bottleneck of von Neumann computing has been significant attention due to the inevitableness of proceeding through enormous data volumes in current digital technologies. Inspired by the human brain's operational principle, the artificial synapse of neuromorphic computing has been explored as an emerging solution. Especially, the optoelectronic synapse is of growing interest as vision is an essential source of information in which dealing with optical stimuli is vital. Herein, flexible optoelectronic synaptic devices composed of centimeter-scale tellurium dioxide (TeO2) films detecting and exhibiting synaptic characteristics to broadband wavelengths are presented. The TeO2-based flexible devices demonstrate a comprehensive set of emulating basic optoelectronic synaptic characteristics; i.e., excitatory postsynaptic current (EPSC), paired-pulse facilitation (PPF), conversion of short-term to long-term memory, and learning/forgetting. Furthermore, they feature linear and symmetric conductance synaptic weight updates at various wavelengths, which are applicable to broadband neuromorphic computations. Based on this large set of synaptic attributes, a variety of applications such as logistic functions or deep learning and image recognition as well as learning simulations are demonstrated. This work proposes a significant milestone of wafer-scale metal oxide semiconductor-based artificial synapses solely utilizing their optoelectronic features and mechanical flexibility, which is attractive toward scaled-up neuromorphic architectures.
RESUMEN
Transient electronics technology has enabled the programmed disintegration of functional devices, paving the way for environmentally sustainable management of electronic wastes as well as facilitating the exploration of novel device concepts. While a variety of inorganic and/or organic materials have been employed as media to introduce transient characteristics in electronic devices, they have been mainly limited to function as passive device components. Herein, we report that calcium (Ca) alginate, a natural biopolymer, exhibits multifunctionalities of introducing light-triggered transient characteristics as well as constituting active components in electronic devices integrated with two-dimensional (2D) molybdenum disulfide (MoS2) layers. Ca2+ ions-based alginate electrolyte films are prepared through hydrolysis reactions and are subsequently incorporated with riboflavin, a natural photosensitizer, for the light-driven dissolution of 2D MoS2 layers. The alginate films exhibit strain-sensitive triboelectricity, confirming the presence of abundant mobile Ca2+ ions, which enables them to be active components of 2D MoS2 field-effect transistors (FETs) functioning as electrolyte top-gates. The alginate-integrated 2D MoS2 FETs display intriguing transient characteristics of spontaneous degradation upon ultraviolet-to-visible light illumination as well as water exposure. Such transient characteristics are demonstrated even in ambient conditions with natural sunlight, highlighting the versatility of the developed approach. This study emphasizes a relatively unexplored aspect of combining naturally abundant polymers with emerging near atom-thickness semiconductors toward realizing unconventional and transformative device functionalities.
RESUMEN
In-plane anisotropic two-dimensional (2D) materials exhibit in-plane orientation-dependent properties. The anisotropic unit cell causes these materials to show lower symmetry but more diverse physical properties than in-plane isotropic 2D materials. In addition, the artificial stacking of in-plane anisotropic 2D materials can generate new phenomena that cannot be achieved in in-plane isotropic 2D materials. In this perspective we provide an overview of representative in-plane anisotropic 2D materials and their properties, such as black phosphorus, group IV monochalcogenides, group VI transition metal dichalcogenides with 1T' and Tdphases, and rhenium dichalcogenides. In addition, we discuss recent theoretical and experimental investigations of twistronics using in-plane anisotropic 2D materials. Both in-plane anisotropic 2D materials and their twistronics hold considerable potential for advancing the field of 2D materials, particularly in the context of orientation-dependent optoelectronic devices.
RESUMEN
Two-dimensional (2D) transition metal dichalcogenide (TMD) layers are highly promising as field-effect transistor (FET) channels in the atomic-scale limit. However, accomplishing this superiority in scaled-up FETs remains challenging due to their van der Waals (vdW) bonding nature with respect to conventional metal electrodes. Herein, we report a scalable approach to fabricate centimeter-scale all-2D FET arrays of platinum diselenide (PtSe2) with in-plane platinum ditelluride (PtTe2) edge contacts, mitigating the aforementioned challenges. We realized a reversible transition between semiconducting PtSe2 and metallic PtTe2 via a low-temperature anion exchange reaction compatible with the back-end-of-line (BEOL) processes. All-2D PtSe2 FETs seamlessly edge-contacted with transited metallic PtTe2 exhibited significant performance improvements compared to those with surface-contacted gold electrodes, e.g., an increase of carrier mobility and on/off ratio by over an order of magnitude, achieving a maximum hole mobility of â¼50.30 cm2 V-1 s-1 at room temperature. This study opens up new opportunities toward atomically thin 2D-TMD-based circuitries with extraordinary functionalities.
RESUMEN
Tin monosulfide (SnS) is a promising piezoelectric material with an intrinsically layered structure, making it attractive for self-powered wearable and stretchable devices. However, for practical application purposes, it is essential to improve the output and manufacturing compatibility of SnS-based piezoelectric devices by exploring their large-area synthesis principle. In this study, we report the chemical vapor deposition (CVD) growth of centimeter-scale two-dimensional (2D) SnS layers at temperatures as low as 200 °C, allowing compatibility with processing a range of polymeric substrates. The intrinsic piezoelectricity of 2D SnS layers directly grown on polyamides (PIs) was confirmed by piezoelectric force microscopy (PFM) phase maps and force-current corroborative measurements. Furthermore, the structural robustness of the centimeter-scale 2D SnS layers/PIs allowed for engraving complicated kirigami patterns on them. The kirigami-patterned 2D SnS layer devices exhibited intriguing strain-tolerant piezoelectricity, which was employed in detecting human body motions and generating photocurrents irrespective of strain rate variations. These results establish the great promise of 2D SnS layers for practically relevant large-scale device technologies with coupled electrical and mechanical properties.
RESUMEN
Nanomaterials have gained enormous interest in improving the performance of energy harvest systems, biomedical devices, and high-strength composites. Many studies were performed fabricating more elaborate and heterogeneous nanostructures then the structures were characterized using TEM tomographic images, upgrading the fabrication technique. Despite the effort, intricate fabrication process, agglomeration characteristic, and non-uniform output were still limited to presenting the 3D panoramic views straightforwardly. Here we suggested in situ synthesis method to prepare complex and hierarchically-assembled nanostructures that consisted of ZnS nanowire core and nanoparticles under Ag2S catalyst. We demonstrated that the vaporized Zn and S were solidified in different shapes of nanostructures with the temperatures solely. To our knowledge, this is the first demonstration of synthesizing heterogeneous nanostructures, consisting of a nanowire from the vapor-liquid-solid and then nanoparticles from the vapor-solid grown mechanism by in situ temperature control. The obtained hierarchically-assembled ZnS nanostructures were characterized by various TEM technologies, verifying the crystal growth mechanism. Lastly, electron tomography and 3D printing enabled the nanoscale structures to visualize with centimeter scales. The 3D printing from randomly fabricated nanomaterials is rarely performed to date. The collaborating work could offer a better opportunity to fabricate advanced and sophisticated nanostructures.
RESUMEN
Transition metal dichalcogenides is an emerging 2D semiconducting material group which has excellent physical properties in the ultimately scaled thickness dimension. Specifically, van der Waals heterostructures hold the great promise in further advancing both the fundamental scientific knowledge and practical technological applications of 2D materials. Although 2D materials have been extensively studied for various sensing applications, temperature sensing still remains relatively unexplored. In this work, we experimentally study the temperature-dependent Raman spectroscopy and electrical conductivity of molybdenum disulfide (MoS2) and its heterostructures with platinum dichalcogenides (PtSe2and PtTe2) to explore their potential to become the next-generation temperature sensor. It is found that the MoS2-PtX2heterostructure shows the great promise as the high-sensitivity temperature sensor.
RESUMEN
Crystallographically anisotropic two-dimensional (2D) molybdenum disulfide (MoS2) with vertically aligned (VA) layers is attractive for electrochemical sensing owing to its surface-enriched dangling bonds coupled with extremely large mechanical deformability. In this study, we explored VA-2D MoS2layers integrated on cellulose nanofibers (CNFs) for detecting various volatile organic compound gases. Sensor devices employing VA-2D MoS2/CNFs exhibited excellent sensitivities for the tested gases of ethanol, methanol, ammonia, and acetone; e.g. a high response rate up to 83.39% for 100 ppm ethanol, significantly outperforming previously reported sensors employing horizontally aligned 2D MoS2layers. Furthermore, VA-2D MoS2/CNFs were identified to be completely dissolvable in buffer solutions such as phosphate-buffered saline solution and baking soda buffer solution without releasing toxic chemicals. This unusual combination of high sensitivity and excellent biodegradability inherent to VA-2D MoS2/CNFs offers unprecedented opportunities for exploring mechanically reconfigurable sensor technologies with bio-compatible transient characteristics.
RESUMEN
Neuromorphic visual systems emulating biological retina functionalities have enormous potential for in-sensor computing, with prospects of making artificial intelligence ubiquitous. Conventionally, visual information is captured by an image sensor, stored by memory units, and eventually processed by the machine learning algorithm. Here, we present an optoelectronic synapse device with multifunctional integration of all the processes required for real time object identification. Ultraviolet-visible wavelength-sensitive MoS2 FET channel with infrared sensitive PtTe2/Si gate electrode enables the device to sense, store, and process optical data for a wide range of the electromagnetic spectrum, while maintaining a low dark current. The device exhibits optical stimulation-controlled short-term and long-term potentiation, electrically driven long-term depression, synaptic weight update for multiple wavelengths of light ranging from 300 nm in ultraviolet to 2 µm in infrared. An artificial neural network developed using the extracted weight update parameters of the device can be trained to identify both single wavelength and mixed wavelength patterns. This work demonstrates a device that could potentially be used for realizing a multiwavelength neuromorphic visual system for pattern recognition and object identification.
Asunto(s)
Inteligencia Artificial , Sinapsis , Redes Neurales de la Computación , Algoritmos , Plasticidad NeuronalRESUMEN
Various near-atom-thickness two-dimensional (2D) van der Waals (vdW) crystals with unparalleled electromechanical properties have been explored for transformative devices. Currently, the availability of 2D vdW crystals is rather limited in nature as they are only obtained from certain mother crystals with intrinsically possessed layered crystallinity and anisotropic molecular bonding. Recent efforts to transform conventionally non-vdW three-dimensional (3D) crystals into ultrathin 2D-like structures have seen rapid developments to explore device building blocks of unique form factors. Herein, we explore a "peel-and-stick" approach, where a nonlayered 3D platinum sulfide (PtS) crystal, traditionally known as a cooperate mineral material, is transformed into a freestanding 2D-like membrane for electromechanical applications. The ultrathin (â¼10 nm) 3D PtS films grown on large-area (>cm2) silicon dioxide/silicon (SiO2/Si) wafers are precisely "peeled" inside water retaining desired geometries via a capillary-force-driven surface wettability control. Subsequently, they are "sticked" on strain-engineered patterned substrates presenting prominent semiconducting properties, i.e., p-type transport with an optical band gap of â¼1.24 eV. A variety of mechanically deformable strain-invariant electronic devices have been demonstrated by this peel-and-stick method, including biaxially stretchable photodetectors and respiratory sensing face masks. This study offers new opportunities of 2D-like nonlayered semiconducting crystals for emerging mechanically reconfigurable and stretchable device technologies.
RESUMEN
Brain-inspired computing enabled by memristors has gained prominence over the years due to the nanoscale footprint and reduced complexity for implementing synapses and neurons. The demonstration of complex neuromorphic circuits using conventional materials systems has been limited by high cycle-to-cycle and device-to-device variability. Two-dimensional (2D) materials have been used to realize transparent, flexible, ultra-thin memristive synapses for neuromorphic computing, but with limited knowledge on the statistical variation of devices. In this work, we demonstrate ultra-low-variability synapses using chemical vapor deposited 2D MoS2 as the switching medium with Ti/Au electrodes. These devices, fabricated using a transfer-free process, exhibit ultra-low variability in SET voltage, RESET power distribution, and synaptic weight update characteristics. This ultra-low variability is enabled by the interface rendered by a Ti/Au top contact on Si-rich MoS2 layers of mixed orientation, corroborated by transmission electron microscopy (TEM), electron energy loss spectroscopy (EELS), and X-ray photoelectron spectroscopy (XPS). TEM images further confirm the stability of the device stack even after subjecting the device to 100 SET-RESET cycles. Additionally, we implement logic gates by monolithic integration of MoS2 synapses with MoS2 leaky integrate-and-fire neurons to show the viability of these devices for non-von Neumann computing.
Asunto(s)
Molibdeno , Sinapsis , Encéfalo , Neuronas/fisiología , Sinapsis/fisiologíaRESUMEN
In recent years, there has been increasing interest in leveraging two-dimensional (2D) van der Waals (vdW) crystals for infrared (IR) photodetection, exploiting their unusual optoelectrical properties. Some 2D vdW materials with small band gap energies such as graphene and black phosphorus have been explored as stand-alone IR responsive layers in photodetectors. However, the devices incorporating these IR-sensitive 2D layers often exhibited poor performances owing to their preparation issues such as limited scalability and air instability. Herein, we explored wafer-scale 2D platinum ditelluride (PtTe2) layers for near-to-mid IR photodetection by directly growing them onto silicon (Si) wafers. 2D PtTe2/Si heterojunctions exhibited wavelength- and intensity-dependent high photocurrents in a spectral range of â¼1-7 µm, significantly outperforming stand-alone 2D PtTe2 layers. The observed superiority is attributed to their excellent Schottky junction characteristics accompanying suppressed carrier recombination as well as optical absorbance competition between 2D PtTe2 layers and Si. The direct and scalable growth of 2D PtTe2 layers was further extended to demonstrate mechanically flexible IR photodetectors.
RESUMEN
Wearable bioelectronics with emphasis on the research and development of advanced person-oriented biomedical devices have attracted immense interest in the past decade. Scientists and clinicians find it essential to utilize skin-worn smart tattoos for on-demand and ambulatory monitoring of an individual's vital signs. Here, we report on the development of ultrathin platinum-based two-dimensional dichalcogenide (Pt-TMDs)-based electronic tattoos as advanced building blocks of future wearable bioelectronics. We made these ultrathin electronic tattoos out of large-scale synthesized platinum diselenide (PtSe2) and platinum ditelluride (PtTe2) layered materials and used them for monitoring human physiological vital signs, such as the electrical activity of the heart and the brain, muscle contractions, eye movements, and temperature. We show that both materials can be used for these applications; yet, PtTe2 was found to be the most suitable choice due to its metallic structure. In terms of sheet resistance, skin contact, and electrochemical impedance, PtTe2 outperforms state-of-the-art gold and graphene electronic tattoos and performs on par with medical-grade Ag/AgCl gel electrodes. The PtTe2 tattoos show 4 times lower impedance and almost 100 times lower sheet resistance compared to monolayer graphene tattoos. One of the possible prompt implications of this work is perhaps in the development of advanced human-machine interfaces. To display the application, we built a multi-tattoo system that can easily distinguish eye movement and identify the direction of an individual's sight.
Asunto(s)
Grafito , Tatuaje , Dispositivos Electrónicos Vestibles , Electrodos , Electrónica , HumanosRESUMEN
Non-volatile resistive switching (NVRS) is a widely available effect in transitional metal oxides, colloquially known as memristors, and of broad interest for memory technology and neuromorphic computing. Until recently, NVRS was not known in other transitional metal dichalcogenides (TMDs), an important material class owing to their atomic thinness enabling the ultimate dimensional scaling. Here, various monolayer or few-layer 2D materials are presented in the conventional vertical structure that exhibit NVRS, including TMDs (MX2 , M = transitional metal, e.g., Mo, W, Re, Sn, or Pt; X = chalcogen, e.g., S, Se, or Te), TMD heterostructure (WS2 /MoS2 ), and an atomically thin insulator (h-BN). These results indicate the universality of the phenomenon in 2D non-conductive materials, and feature low switching voltage, large ON/OFF ratio, and forming-free characteristic. A dissociation-diffusion-adsorption model is proposed, attributing the enhanced conductance to metal atoms/ions adsorption into intrinsic vacancies, a conductive-point mechanism supported by first-principle calculations and scanning tunneling microscopy characterizations. The results motivate further research in the understanding and applications of defects in 2D materials.
RESUMEN
Two-dimensional (2D) molybdenum disulfide (MoS2) layers are suitable for visible-to-near infrared photodetection owing to their tunable optical bandgaps. Also, their superior mechanical deformability enabled by an extremely small thickness and van der Waals (vdW) assembly allows them to be structured into unconventional physical forms, unattainable with any other materials. Herein, we demonstrate a new type of 2D MoS2 layer-based rollable photodetector that can be mechanically reconfigured while maintaining excellent geometry-invariant photo-responsiveness. Large-area (>a few cm2) 2D MoS2 layers grown by chemical vapor deposition (CVD) were integrated on transparent and flexible substrates composed of 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-oxidized cellulose nanofibers (TOCNs) by a direct solution casting method. These composite materials in three-dimensionally rollable forms exhibited a large set of intriguing photo-responsiveness, well preserving intrinsic opto-electrical characteristics of the integrated 2D MoS2 layers; i.e., light intensity-dependent photocurrents insensitive to illumination angles as well as highly tunable photocurrents varying with the rolling number of 2D MoS2 layers, which were impossible to achieve with conventional photodetectors. This study provides a new design principle for converting 2D materials to three-dimensional (3D) objects of tailored functionalities and structures, significantly broadening their potential and versatility in futuristic devices.
RESUMEN
2D PtTe2 layers, a relatively new class of 2D crystals, have unique band structure and remarkably high electrical conductivity promising for emergent opto-electronics. This intrinsic superiority can be further leveraged toward practical device applications by merging them with mature 3D semiconductors, which has remained largely unexplored. Herein, we explored 2D/3D heterojunction devices by directly growing large-area (>cm2) 2D PtTe2 layers on Si wafers using a low-temperature CVD method and unveiled their superior opto-electrical characteristics. The devices exhibited excellent Schottky transport characteristics essential for high-performance photovoltaics and photodetection, i.e., well-balanced combination of high photodetectivity (>1013 Jones), small photo-responsiveness time (â¼1 µs), high current rectification ratio (>105), and water super-hydrophobicity driven photovoltaic improvement (>300%). These performances were identified to be superior to those of previously explored 2D/3D or 2D layer-based devices with much smaller junction areas, and their underlying principles were confirmed by DFT calculations.
RESUMEN
Two-dimensional (2D) layered materials and their heterostructures have recently been recognized as promising building blocks for futuristic brain-like neuromorphic computing devices. They exhibit unique properties such as near-atomic thickness, dangling-bond-free surfaces, high mechanical robustness, and electrical/optical tunability. Such attributes unattainable with traditional electronic materials are particularly promising for high-performance artificial neurons and synapses, enabling energy-efficient operation, high integration density, and excellent scalability. In this review, diverse 2D materials explored for neuromorphic applications, including graphene, transition metal dichalcogenides, hexagonal boron nitride, and black phosphorous, are comprehensively overviewed. Their promise for neuromorphic applications are fully discussed in terms of material property suitability and device operation principles. Furthermore, up-to-date demonstrations of neuromorphic devices based on 2D materials or their heterostructures are presented. Lastly, the challenges associated with the successful implementation of 2D materials into large-scale devices and their material quality control will be outlined along with the future prospect of these emergent materials.
RESUMEN
Two-dimensional (2D) molybdenum disulfide (MoS2) with vertically aligned (VA) layers exhibits significantly enriched surface-exposed edge sites with an abundance of dangling bonds owing to its intrinsic crystallographic anisotropy. Such structural variation renders the material with exceptionally high chemical reactivity and chemisorption ability, making it particularly attractive for high-performance electrochemical sensing. This superior property can be further promoted as far as it is integrated on mechanically stretchable substrates well retaining its surface-exposed defective edges, projecting opportunities for a wide range of applications utilizing its structural uniqueness and mechanical flexibility. In this work, we explored VA-2D MoS2 layers configured in laterally stretchable forms for multifunctional nitrogen dioxide (NO2) gas sensors. Large-area (>cm2) VA-2D MoS2 layers grown by a chemical vapor deposition (CVD) method were directly integrated onto a variety of flexible substrates with serpentine patterns judiciously designed to accommodate a large degree of tensile strain. These uniquely structured VA-2D MoS2 layers were demonstrated to be highly sensitive to NO2 gas of controlled concentration preserving their intrinsic structural and chemical integrity, e.g., significant current response ratios of â¼160-380% upon the introduction of NO2 at a level of 5-30 ppm. Remarkably, they exhibited such a high sensitivity even under lateral stretching up to 40% strain, significantly outperforming previously reported 2D MoS2 layer-based NO2 gas sensors of any structural forms. Underlying principles for the experimentally observed superiority were theoretically unveiled by density functional theory (DFT) calculation and finite element method (FEM) analysis. The intrinsic high sensitivity and large stretchability of VA-2D MoS2 layers confirmed in this study are believed to be applicable in sensing diverse gas species, greatly broadening their versatility in stretchable and wearable technologies.