Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Extracell Vesicles ; 12(11): e12366, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37885043

RESUMEN

Extracellular vesicle (EV)-carried miRNAs can influence gene expression and functional phenotypes in recipient cells. Argonaute 2 (Ago2) is a key miRNA-binding protein that has been identified in EVs and could influence RNA silencing. However, Ago2 is in a non-vesicular form in serum and can be an EV contaminant. In addition, RNA-binding proteins (RBPs), including Ago2, and RNAs are often minor EV components whose sorting into EVs may be regulated by cell signaling state. To determine the conditions that influence detection of RBPs and RNAs in EVs, we evaluated the effect of growth factors, oncogene signaling, serum, and cell density on the vesicular and nonvesicular content of Ago2, other RBPs, and RNA in small EV (SEV) preparations. Media components affected both the intravesicular and extravesicular levels of RBPs and miRNAs in EVs, with serum contributing strongly to extravesicular miRNA contamination. Furthermore, isolation of EVs from hollow fiber bioreactors revealed complex preparations, with multiple EV-containing peaks and a large amount of extravesicular Ago2/RBPs. Finally, KRAS mutation impacts the detection of intra- and extra-vesicular Ago2. These data indicate that multiple cell culture conditions and cell states impact the presence of RBPs in EV preparations, some of which can be attributed to serum contamination.


Asunto(s)
Proteínas Argonautas , Vesículas Extracelulares , MicroARNs , Vesículas Extracelulares/metabolismo , MicroARNs/metabolismo , Proteínas Argonautas/metabolismo
2.
J Extracell Vesicles ; 10(12): e12152, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34596354

RESUMEN

Osteoporosis is one of the most common skeletal disorders caused by the imbalance between bone formation and resorption, resulting in quantitative loss of bone tissue. Since stem cell-derived extracellular vesicles (EVs) are growing attention as novel cell-free therapeutics that have advantages over parental stem cells, the therapeutic effects of EVs from adipose tissue-derived stem cells (ASC-EVs) on osteoporosis pathogenesis were investigated. ASC-EVs were isolated by a multi-filtration system based on the tangential flow filtration (TFF) system and characterized using transmission electron microscopy, dynamic light scattering, zeta potential, flow cytometry, cytokine arrays, and enzyme-linked immunosorbent assay. EVs are rich in growth factors and cytokines related to bone metabolism and mesenchymal stem cell (MSC) migration. In particular, osteoprotegerin (OPG), a natural inhibitor of receptor activator of nuclear factor-κB ligand (RANKL), was highly enriched in ASC-EVs. We found that the intravenous administration of ASC-EVs attenuated bone loss in osteoporosis mice. Also, ASC-EVs significantly inhibited osteoclast differentiation of macrophages and promoted the migration of bone marrow-derived MSCs (BM-MSCs). However, OPG-depleted ASC-EVs did not show anti-osteoclastogenesis effects, demonstrating that OPG is critical for the therapeutic effects of ASC-EVs. Additionally, small RNA sequencing data were analysed to identify miRNA candidates related to anti-osteoporosis effects. miR-21-5p in ASC-EVs inhibited osteoclast differentiation through Acvr2a down-regulation. Also, let-7b-5p in ASC-EVs significantly reduced the expression of genes related to osteoclastogenesis. Finally, ASC-EVs reached the bone tissue after they were injected intravenously, and they remained longer. OPG, miR-21-5p, and let-7b-5p in ASC-EVs inhibit osteoclast differentiation and reduce gene expression related to bone resorption, suggesting that ASC-EVs are highly promising as cell-free therapeutic agents for osteoporosis treatment.


Asunto(s)
Tejido Adiposo/metabolismo , Vesículas Extracelulares/metabolismo , Osteoporosis/terapia , Osteoprotegerina/genética , Células Madre/metabolismo , Animales , Modelos Animales de Enfermedad , Femenino , Humanos , Ratones , Osteoporosis/patología
3.
J Control Release ; 336: 285-295, 2021 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-34174353

RESUMEN

Allogeneic transplantation of mesenchymal stem cell-derived extracellular vesicles (EVs) offers great potential for treating liver fibrosis. However, owing to their intrinsic surface characteristics, bare EVs are non-specifically distributed in the liver tissue after systemic administration, leading to limited therapeutic efficacy. To target activated hepatic stellate cells (HSCs), which are responsible for hepatic fibrogenesis, vitamin A-coupled small EVs (V-EVs) were prepared by incorporating vitamin A derivative into the membrane of bare EVs. No significant differences were found in the particle size and morphology between bare and V-EVs. In addition, surface engineering of EVs did not affect the expression of surface marker proteins (e.g., CD63 and CD9), as demonstrated by flow cytometry. Owing to the surface incorporation of vitamin A, V-EVs were selectively taken up by activated HSCs via receptor-mediated endocytosis. When systemically administered to mice with liver fibrosis, V-EVs effectively targeted activated HSCs in the liver tissue, resulting in reversal of the fibrotic cascade. Consequently, even at a 10-fold lower dose, V-EVs exhibited comparable anti-fibrotic effects to those of bare EVs, substantiating their therapeutic potential for liver fibrosis.


Asunto(s)
Vesículas Extracelulares , Células Madre Mesenquimatosas , Animales , Células Estrelladas Hepáticas , Cirrosis Hepática/tratamiento farmacológico , Ratones , Vitamina A
4.
J Extracell Vesicles ; 9(1): 1735249, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32284824

RESUMEN

Osteoarthritis (OA) is a chronic degenerative disease of articular cartilage that is the most common joint disease worldwide. Mesenchymal stem cells (MSCs) have been the most extensively explored for the treatment of OA. Recently, it has been demonstrated that MSC-derived extracellular vesicles (EVs) may contribute to the potential mechanisms of MSC-based therapies. In this study, we investigated the therapeutic potential of human adipose-derived stem cells EVs (hASC-EVs) in alleviating OA, along with the mechanism. EVs were isolated from the culture supernatants of hASCs by a multi-filtration system based on the tangential flow filtration (TFF) system. The isolated EVs were characterised using dynamic light scattering (DLS), transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA) and flow cytometry analysis. The hASC-EVs not only promoted the proliferation and migration of human OA chondrocytes, but also maintained the chondrocyte matrix by increasing type Ⅱ collagen synthesis and decreasing MMP-1, MMP-3, MMP-13 and ADAMTS-5 expression in the presence of IL-1ß in vitro. Intra-articular injection of hASC-EVs significantly attenuated OA progression and protected cartilage from degeneration in both the monosodium iodoacetate (MIA) rat and the surgical destabilisation of the medial meniscus (DMM) mouse models. In addition, administration of hASC-EVs inhibited the infiltration of M1 macrophages into the synovium. Overall results suggest that the hASC-EVs should be considered as a potential therapeutic approach in the treatment of OA.

5.
Sci Adv ; 6(13): eaay6721, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32232152

RESUMEN

Stem cell-derived extracellular vesicles (EVs) offer alternative approaches to stem cell-based therapy for regenerative medicine. In this study, stem cell EVs derived during differentiation are developed to use as cell-free therapeutic systems by inducing tissue-specific differentiation. EVs are isolated from human adipose-derived stem cells (HASCs) during white and beige adipogenic differentiation (D-EV and BD-EV, respectively) via tangential flow filtration. D-EV and BD-EV can successfully differentiate HASCs into white and beige adipocytes, respectively. D-EV are transplanted with collagen/methylcellulose hydrogels on the backs of BALB/c mice, and they produce numerous lipid droplets in injected sites. Treatments of BD-EV attenuate diet-induced obesity through browning of adipose tissue in mice. Furthermore, high-fat diet-induced hepatic steatosis and glucose tolerance are improved by BD-EV treatment. miRNAs are responsible for the observed effects of BD-EV. These results reveal that secreted EVs during stem cell differentiation into white adipocytes or beige adipocytes can promote cell reprogramming.


Asunto(s)
Adipocitos Beige/citología , Adipocitos Blancos/citología , Técnicas de Reprogramación Celular , Reprogramación Celular , Vesículas Extracelulares/metabolismo , Células Madre/citología , Células Madre/metabolismo , Adipocitos Beige/metabolismo , Adipocitos Blancos/metabolismo , Adipogénesis , Adipoquinas/metabolismo , Animales , Diferenciación Celular , Perfilación de la Expresión Génica , Humanos , Masculino , Ratones , MicroARNs/genética
6.
Colloids Surf B Biointerfaces ; 149: 122-129, 2017 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-27744209

RESUMEN

Self-assembled nanoparticles based on PEGylated human α-elastin were prepared as a potential vehicle for sustained protein delivery. The α-elastin was extracted from human adipose tissue and modified with methoxypolyethyleneglycol (mPEG) to control particle size and enhance the colloidal stability. The PEGylated human α-elastin showed sol-to-particle transition with a lower critical solution temperature (LCST) of 25°C-40°C in aqueous media. The PEGylated human α-elastin nanoparticles (PhENPs) showed a narrow size distribution with an average diameter of 330±33nm and were able to encapsulate significant amounts of insulin and bovine serum albumin (BSA) upon simple mixing at low temperature in water and subsequent heating to physiological temperature. The release profiles of insulin and BSA showed sustained release for 72h. Overall, the thermo-responsive self-assembled PhENPs provide a useful tool for a range of protein delivery and tissue engineering applications.


Asunto(s)
Portadores de Fármacos , Elastina/química , Nanopartículas/química , Polietilenglicoles/química , Tejido Adiposo/química , Animales , Bovinos , Composición de Medicamentos , Liberación de Fármacos , Elastina/aislamiento & purificación , Humanos , Insulina/química , Cinética , Nanopartículas/ultraestructura , Tamaño de la Partícula , Transición de Fase , Albúmina Sérica Bovina/química , Soluciones , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA