Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 137
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Pharmaceutics ; 15(11)2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-38004616

RESUMEN

In our previous study, riluzole azo-linked to salicylic acid (RAS) was prepared as a colon-targeted prodrug of riluzole (RLZ) to facilitate the repositioning of RLZ as an anticolitic drug. RAS is more effective against rat colitis than RLZ and sulfasalazine, currently used as an anti-inflammatory bowel disease drug. The aim of this study is to further improve colon specificity, anticolitic potency, and safety of RAS. N-succinylaspart-1-ylRLZ (SAR) and N-succinylglutam-1-ylRLZ (SGR) were synthesized and evaluated as a "me-better" colon-targeted prodrug of RLZ against rat colitis. SAR but not SGR was converted to RLZ in the cecal contents, whereas both conjugates remained intact in the small intestine. When comparing the colon specificity of SAR with that of RAS, the distribution coefficient and cell permeability of SAR were lower than those of RAS. In parallel, oral SAR delivered a greater amount of RLZ to the cecum of rats than oral RAS. In a DNBS-induced rat model of colitis, oral SAR mitigated colonic damage and inflammation and was more potent than oral RAS. Moreover, upon oral administration, SAR had a greater ability to limit the systemic absorption of RLZ than RAS, indicating a reduced risk of systemic side effects of SAR. Taken together, SAR may be a "me-better" colon-targeted prodrug of RLZ to improve the safety and anticolitic potency of RAS, an azo-type colon-targeted prodrug of RLZ.

2.
Arch Pharm Res ; 46(7): 646-658, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37537405

RESUMEN

Colon-targeted oral drug delivery systems comprising nanoparticles and microparticles have emerged as promising tools for the treatment of ulcerative colitis (UC) because they minimize side effects and maximize the local drug concentration. Dexamethasone sodium phosphate (DSP) is a potent anti-inflammatory glucocorticoid used for the treatment of UC. However, it remains a rather short-term treatment option owing to its side effects. In the present study, we developed the alginate gel encapsulating ionically bridged DSP-zinc-poly(lactic-co-glycolic acid) (PLGA) nanocomplex (DZP-NCs-in-microgel) for the oral local treatment of UC. The successful encapsulation of DSP-zinc-PLGA nanocomplex (DZP-NCs) in alginate microgel was confirmed by SEM imaging. The prepared gel released DZP-NCs in the stimulated intestinal fluid and dampened the release of DSP in the upper gastrointestinal tract. Furthermore, DZP-NCs-in-microgel alleviated colonic inflammation in a mouse model of dextran sodium sulfate-induced colitis by relieving clinical symptoms and histological marks. Our results suggest a novel approach for the oral colon-targeted delivery of dexamethasone sodium phosphate for the treatment of UC.


Asunto(s)
Colitis Ulcerosa , Colitis , Microgeles , Ratones , Animales , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/patología , Microgeles/uso terapéutico , Zinc/efectos adversos , Alginatos/efectos adversos , Colitis/inducido químicamente , Colon/patología , Sulfato de Dextran/efectos adversos , Modelos Animales de Enfermedad
3.
Front Pharmacol ; 14: 1095955, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37153778

RESUMEN

As our previous study revealed that N-benzyl-N-methyldecan-1-amine (BMDA), a new molecule originated from Allium sativum, exhibits anti-neoplastic activities, we herein explored other functions of the compound and its derivative [decyl-(4-methoxy-benzyl)-methyl-amine; DMMA] including anti-inflammatory and anti-oxidative activities. Pretreatment of THP-1 cells with BMDA or DMMA inhibited tumor necrosis factor (TNF)-α and interleukin (IL)-1ß production, and blocked c-jun terminal kinase (JNK), p38 mitogen-activated protein kinase (MAPK), MAPKAP kinase (MK)2 and NF-κΒ inflammatory signaling during LPS stimulation. Rectal treatment with BMDA or DMMA reduced the severity of colitis in 2,4-dinitrobenzenesulfonic acid (DNBS)-treated rat. Consistently, administration of the compounds decreased myeloperoxidase (MPO) activity (representing neutrophil infiltration in colonic mucosa), production of inflammatory mediators such as cytokine-induced neutrophil chemoattractant (CINC)-3 and TNF-α, and activation of JNK and p38 MAPK in the colon tissues. In addition, oral administration of these compounds ameliorated collagen-induced rheumatoid arthritis (RA) in mice. The treatment diminished the levels of inflammatory cytokine transcripts, and protected connective tissues through the expression of anti-oxidation proteins such as nuclear factor erythroid-related factor (Nrf)2 and heme oxygenase (HO)1. Additionally, aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels did not differ between the BMDA- or DMMA-treated and control animals, indicating that the compounds do not possess liver toxicity. Taken together, these findings propose that BMDA and DMMA could be used as new drugs for curing inflammatory bowel disease (IBD) and RA.

4.
Bioeng Transl Med ; 8(3): e10527, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37206214

RESUMEN

The gut microbiome is closely linked to gastrointestinal health and disease status. Oral administration of known probiotic strains is now considered a promising therapeutic strategy, especially for refractory diseases such as inflammatory bowel disease. In this study, we developed a nanostructured hydroxyapatite/alginate (HAp/Alg) composite hydrogel that protects its encapsulated probiotic Lactobacillus rhamnosus GG (LGG) by neutralizing hydrogen ions that penetrate the hydrogel in a stomach without inhibiting LGG release in an intestine. Surface and transection analyses of the hydrogel revealed characteristic patterns of crystallization and composite-layer formation. TEM revealed the dispersal of the nanosized HAp crystals and encapsulated LGG in the Alg hydrogel networks. The HAp/Alg composite hydrogel maintained its internal microenvironmental pH, thereby enabling the LGG to survive for substantially longer. At intestinal pH, the encapsulated LGG was completely released upon disintegration of the composite hydrogel. In a dextran sulfate sodium-induced colitis mouse model, we then assessed the therapeutic effect of the LGG-encapsulating hydrogel. This achieved intestinal delivery of LGG with minimal loss of enzymatic function and viability, ameliorating colitis by reducing epithelial damage, submucosal edema, inflammatory cell infiltration, and the number of goblet cells. These findings reveal the HAp/Alg composite hydrogel as a promising intestinal-delivery platform for live microorganisms including probiotics and live biotherapeutic products.

5.
Bioorg Med Chem Lett ; 89: 129306, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37116763

RESUMEN

Activating NRF2-driven transcription with non-electrophilic small molecules represents an attractive strategy to therapeutically target disease states associated with oxidative stress and inflammation. In this study, we describe a campaign to optimize the potency and efficacy of a previously identified bis-sulfone based non-electrophilic ARE activator 2. This work identifies the efficacious analog 17, a compound with a non-cytotoxic profile in IMR32 cells, as well as ARE activators 18 and 22, analogs with improved cellular potency. In silico drug-likeness prediction suggested the optimized bis-sulfones 17, 18, and 22 will likely be of pharmacological utility.


Asunto(s)
Elementos de Respuesta Antioxidante , Antioxidantes , Antioxidantes/farmacología , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo
6.
Drug Dev Res ; 84(3): 579-591, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36811607

RESUMEN

Alizarin (1,2-dihydroxyanthraquinone) is an anthraquinone reddish dye widely used for painting and textile dyeing. As the biological activity of alizarin has recently attracted increasing attention from researchers, its therapeutic potential as complementary and alternative medicine is of interest. However, no systematic research has been conducted on the biopharmaceutical and pharmacokinetic aspects of alizarin. Therefore, this study aimed to comprehensively investigate the oral absorption and intestinal/hepatic metabolism of alizarin using a simple and sensitive tandem mass spectrometry method developed and validated in-house. The present method for the bioanalysis of alizarin has merits, including a simple pretreatment procedure, small sample volume, and adequate sensitivity. Alizarin exhibited pH-dependent moderate lipophilicity and low solubility with limited intestinal luminal stability. Based on the in vivo pharmacokinetic data, the hepatic extraction ratio of alizarin was estimated to be 0.165-0.264, classified as a low level of hepatic extraction. In an in situ loop study, considerable fractions (28.2%-56.4%) of the alizarin dose were significantly absorbed in gut segments from the duodenum to ileum, suggesting that alizarin may be classified as the Biopharmaceutical Classification System class II. An in vitro metabolism study using rat and human hepatic S9 fractions revealed that glucuronidation and sulfation, but not NADPH-mediated phase I reactions and methylation, are significantly involved in the hepatic metabolism of alizarin. Taken together, it can be estimated that the fractions of oral alizarin dose unabsorbed from the gut lumen and eliminated by the gut and liver before reaching the systemic circulation are 43.6%-76.7%, 0.474%-36.3%, and 3.77%-5.31% of the dose, respectively, resulting in a low oral bioavailability of 16.8%. Therefore, the oral bioavailability of alizarin depends primarily on its chemical degradation in the gut lumen and secondarily on first-pass metabolism.


Asunto(s)
Productos Biológicos , Espectrometría de Masas en Tándem , Ratas , Humanos , Animales , Disponibilidad Biológica , Cromatografía Liquida , Ratas Sprague-Dawley , Antraquinonas , Administración Oral
7.
Pharmacol Rep ; 75(1): 211-221, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36508076

RESUMEN

BACKGROUND: Chloroquine (CQ) is an effective and safe antimalarial drug that is also used as a disease-modifying antirheumatic drug. Recent studies have shown that CQ can sensitize cancer cells to anti-cancer therapies. METHODS: In this study, we investigated the molecular mechanisms underlying CQ-mediated chemosensitization in human colon carcinoma cells. RESULTS: CQ prevented hypoxia-inducible factor (HIF)-1α protein induction in human colon carcinoma cells. CQ also suppressed HIF-1 activity, as represented by CQ inhibition of HIF-1-dependent luciferase activity and reduced induction of vascular endothelial growth factor. Under hypoxia, CQ restricted HIF-1α synthesis but did not affect HIF-1α transcription and protein stability. The hypoxic state activated ataxia telangiectasia and Rad3-related (ATR) kinase and increased the level of phosphorylated checkpoint kinase 1, a substrate of ATR kinase; however, this was prevented by CQ. An ATR kinase inhibitor suppressed the hypoxic induction of HIF-1α protein and was as effective as CQ. The cytotoxicity of 5-fluorouracil (5-FU), the first choice for the treatment of colorectal cancer, was attenuated under hypoxia. CQ enhanced the cytotoxicity of 5-FU treatment, which was mimicked by the transient transfection with HIF-1α siRNA. CONCLUSIONS: Under hypoxia, CQ-mediated sensitization of colon carcinoma HCT116 cells to 5-FU involves HIF-1 inhibition via ATR kinase suppression.


Asunto(s)
Carcinoma , Neoplasias del Colon , Humanos , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Hipoxia de la Célula , Línea Celular Tumoral , Cloroquina/farmacología , Neoplasias del Colon/metabolismo , Fluorouracilo , Hipoxia/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo
8.
J Pineal Res ; 74(1): e12835, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36214640

RESUMEN

N-Acetylserotonin (NAS) is an intermediate in the melatonin biosynthetic pathway. We investigated the anti-inflammatory activity of NAS by focusing on its chemical feature oxidizable to an electrophile. NAS was readily oxidized by reaction with HOCl, an oxidant produced in the inflammatory state. HOCl-reacted NAS (Oxi-NAS), but not NAS, activated the anti-inflammatory nuclear factor erythroid 2-related factor 2 (Nrf2)-heme oxygenase (HO)-1 pathway in cells. Chromatographic and mass analyses demonstrated that Oxi-NAS was the iminoquinone form of NAS and could react with N-acetylcysteine possessing a nucleophilic thiol to form a covalent adduct. Oxi-NAS bound to Kelch-like ECH-associated protein 1, resulting in Nrf2 dissociation. Moreover, rectally administered NAS increased the levels of nuclear Nrf2 and HO-1 proteins in the inflamed colon of rats. Simultaneously, NAS was converted to Oxi-NAS in the inflamed colon. Rectal NAS mitigated colonic damage and inflammation. The anticolitic effects were significantly compromised by the coadministration of an HO-1 inhibitor.


Asunto(s)
Colitis , Melatonina , Ratas , Animales , Factor 2 Relacionado con NF-E2/metabolismo , Melatonina/farmacología , Melatonina/uso terapéutico , Hemo-Oxigenasa 1/metabolismo , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/metabolismo , Antiinflamatorios/uso terapéutico
9.
ACS Appl Mater Interfaces ; 14(45): 50507-50519, 2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36331408

RESUMEN

A bacteria-infected wound can lead to being life-threatening and raises a great economic burden on the patient. Here, we developed polyethylenimine 1.8k (PEI1.8k) surface modified NO-releasing polyethylenimine 25k (PEI25k)-functionalized graphene oxide (GO) nanoparticles (GO-PEI25k/NO-PEI1.8k NPs) for enhanced antibacterial activity and infected wound healing via binding to the bacterial surface. In vitro antibacterial activity and in vivo wound healing efficacy in an infected wound model were evaluated compared with NO-releasing NPs (GO-PEI25k/NO NPs). Surface modification with PEI1.8k can enhance the ability of nanoparticles to adhere to bacteria. GO-PEI25k/NO-PEI1.8k NPs released NO in a sustained manner for 48 h and exhibited the highest bactericidal activity (99.99% killing) against methicillin-resistant Staphylococcus aureus (MRSA) and multidrug-resistant Pseudomonas aeruginosa (MRPA) without cytotoxicity to L929 mouse fibroblast cells at 0.1 mg/mL. In the MRPA-infected wound model, GO-PEI25k/NO-PEI1.8k NPs showed 87% wound size reduction while GO-PEI25k/NO NPs showed 23% wound size reduction at 9 days postinjury. Masson trichrome and hematoxylin and eosin staining revealed that GO-PEI25k/NO-PEI1.8k NPs enhanced re-epithelialization and collagen deposition, which are comparable to healthy mouse skin tissue. GO-PEI25k/NO-PEI1.8k NPs hold promise as effective antibacterial and wound healing agents.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Nanopartículas , Infección de Heridas , Ratones , Animales , Óxido Nítrico/farmacología , Pseudomonas aeruginosa , Polietileneimina/farmacología , Adhesivos/farmacología , Infección de Heridas/tratamiento farmacológico , Cicatrización de Heridas , Bacterias , Antibacterianos/farmacología
10.
Pharmaceutics ; 14(10)2022 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-36297553

RESUMEN

Although various local anti-inflammatory therapies for ulcerative colitis have been developed, rapid drug elimination from inflamed colitis tissue and off-target side effects reduce their therapeutic efficacy. In this study, we synthesized curcumin (Cur)-loaded hyaluronic acid (HA)-conjugated nanoparticles (Cur-HA-PLGA-NPs) that target inflamed colitis tissue via HA-CD44 interaction with resident colonic epithelial cells and subsequently target activated macrophages for ulcerative colitis therapy. The synthesized spherical Cur-HA-PLGA-NPs showed physicochemical properties similar to those of non-HA-conjugated Cur-PLGA-NPs. HA-PLGA-NPs exhibited selective accumulation in inflamed colitis tissue with minimal accumulation in healthy colon tissue. HA functionalization enhanced targeted drug delivery to intestinal macrophages, significantly increasing HA-PLGA-NP cellular uptake. Importantly, the rectal administration of Cur-HA-PLGA-NPs exhibited better therapeutic efficacy than Cur-PLGA-NPs in animal studies. Histological examination revealed that Cur-HA-PLGA-NPs reduced inflammation with less inflammatory cell infiltration and accelerated recovery with re-epithelialization signs. Our results suggest that Cur-HA-PLGA-NPs are a promising delivery platform for treating ulcerative colitis.

11.
Biomater Sci ; 10(22): 6500-6509, 2022 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-36178247

RESUMEN

Although CD44-targeted delivery of pure drug microcrystals of azathioprine (AZA) could be a desirable approach to treat ulcerative colitis (UC), premature drug release and systemic absorption before reaching the colitis region remain a major obstacle. In this study, to overcome these limitations, we developed on-demand reconstitutable HA-doped AZA microcrystals (EFS/HA-AZAs) via incorporating hyaluronic acid (HA)-doped AZA microcrystals (HA-AZAs) into a Eudragit FS (EFS) microcomposite. Since EFS acts as a protective layer, the premature release of AZA in the simulated conditions of the stomach and small intestine was substantially reduced, while HA-AZAs were successfully reconstituted from the EFS/HA-AZAs in the colonic environment, resulting from the pH-triggered dissolution of EFS. After complete reconstitution of HA-AZAs in the colon, HA-AZAs selectively accumulated in the inflamed region via the HA-CD44 interaction. Owing to successful colitis-targeted delivery, EFS/HA-AZAs showed potent anti-inflammatory effects in a dextran sulfate sodium-induced murine colitis model within 7 days without systemic toxicity. These results suggest that EFS/HA-AZAs could be a promising drug delivery system for UC treatment.


Asunto(s)
Colitis Ulcerosa , Colitis , Ratones , Animales , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/inducido químicamente , Azatioprina/efectos adversos , Ácido Hialurónico/uso terapéutico , Colitis/inducido químicamente , Colitis/tratamiento farmacológico
12.
Artículo en Inglés | MEDLINE | ID: mdl-35921698

RESUMEN

Velpatasvir is a novel inhibitor of hepatitis C virus nonstructural protein 5A that received US Food and Drug Administration approval for the treatment of patients with chronic hepatitis C virus genotypes 1-6. In the present study, a sensitive bioanalytical method for velpatasvir was developed using high-performance liquid chromatography coupled with a fluorescence detector system, which was applied to elucidate the factors determining the oral bioavailability and disposition of velpatasvir. This method offered sufficient sensitivity, with a lower limit of quantification of 0.5 ng/mL, which is comparable to previously reported methods using liquid chromatography coupled with tandem mass spectrometry. Velpatasvir exhibited low oral bioavailability, moderate intestinal permeability, and significant biliary excretion in rats. It was also found to be significantly metabolized in the liver, with a low-to-moderate extraction ratio; however, its intestinal metabolism and enterohepatic circulation did not occur. Thus, our present results demonstrate that the oral bioavailability of velpatasvir is primarily dependent on gut absorption and hepatic first-pass metabolism. The fractions of velpatasvir dose unabsorbed from the gut and eliminated by the liver before reaching the systemic circulation following oral administration were estimated to be 32.8%-58.6% and 4.74%-30.54% of the oral dose, respectively. To our knowledge, this is the first systematic study to investigate the contributory roles of biopharmaceutical and pharmacokinetic factors on the oral bioavailability of velpatasvir, together with a new bioanalytical method for velpatasvir.


Asunto(s)
Hepacivirus , Hepatitis C Crónica , Administración Oral , Animales , Antivirales , Disponibilidad Biológica , Carbamatos , Cromatografía Líquida de Alta Presión , Hepacivirus/genética , Hepatitis C Crónica/tratamiento farmacológico , Compuestos Heterocíclicos de 4 o más Anillos , Ratas
13.
Mol Pharm ; 19(11): 3784-3794, 2022 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-36043999

RESUMEN

Riluzole (RLZ) is a neuroprotective drug indicated for amyotrophic lateral sclerosis. To examine the feasibility of RLZ for repositioning as an anti-inflammatory bowel disease (IBD) drug, RLZ (2, 5, and 10 mg/kg) was administered orally to rats with colitis induced by 2,4-dinitrobenzenesulfonic acid. Oral RLZ was effective against rat colitis in a dose-dependent manner, which was statistically significant at doses over 5 mg/kg. To address safety issues upon repositioning and further improve anti-colitic effectiveness, RLZ was coupled with salicylic acid (SA) via an azo-bond to yield RLZ-azo-SA (RAS) for the targeted colonic delivery of RLZ. Upon oral gavage, RAS (oral RAS) was efficiently delivered to and activated to RLZ in the large intestine, and systemic absorption of RLZ was substantially reduced. Oral RAS ameliorated colonic damage and inflammation in rat colitis and was more effective than oral RLZ and sulfasalazine, a current anti-IBD drug. Moreover, oral RAS potently inhibited glycogen synthase kinase 3ß (GSK3ß) in the inflamed distal colon, leading to the suppression of NFκB activity and an increase in the level of the anti-inflammatory cytokine interleukin-10. Taken together, RAS, which enables RLZ to be delivered to and inhibit GSK3ß in the inflamed colon, may facilitate repositioning of RLZ as an anti-IBD drug.


Asunto(s)
Colitis , Profármacos , Ratas , Animales , Profármacos/química , Riluzol/uso terapéutico , Riluzol/farmacología , Reposicionamiento de Medicamentos , Ratas Sprague-Dawley , Glucógeno Sintasa Quinasa 3 beta , Colon , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Antiinflamatorios/química
15.
Biomed Pharmacother ; 151: 113141, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35609369

RESUMEN

Resveratrol, a natural polyphenolic phytoalexin, is a dietary supplement that improves the outcomes of metabolic, cardiovascular, and other age-related diseases due to its diverse pharmacological activities. Although there have been several preclinical and clinical investigations of resveratrol, the contributions of gut phase-II metabolism and enterohepatic circulation to the oral bioavailability and pharmacokinetics of resveratrol remain unclear. Furthermore, a physiologically-based pharmacokinetic (PBPK) model that accurately describes and predicts the systemic exposure profiles of resveratrol in clinical settings has not been developed. Experimental data were acquired from several perspectives, including in vitro protein binding and blood distribution, in vitro tissue S9 metabolism, in situ intestinal perfusion, and in vivo pharmacokinetics and excretion studies. Using these datasets, an in-house whole-body PBPK model incorporating route-dependent phase-II (glucuronidation and sulfation) gut metabolism and enterohepatic circulation processes was constructed and optimized for chemical-specific parameters. The developed PBPK model aligned with the observed systemic exposure profiles of resveratrol in single and multiple dosing regimens with an acceptable accuracy of 0.538-0.999-fold errors. Furthermore, the model simulations elucidated the substantial contribution of gut first-pass metabolism to the oral bioavailability of resveratrol and suggested differential effects of enterohepatic circulation on the systemic exposure of resveratrol between rats and humans. After partial modification and verification, our proposed PBPK model would be valuable to optimize dosage regimens and predict food-drug interactions with resveratrol-based natural products in various clinical scenarios.


Asunto(s)
Circulación Enterohepática , Modelos Biológicos , Animales , Disponibilidad Biológica , Humanos , Inactivación Metabólica , Ratas , Resveratrol
16.
Pharmaceutics ; 14(3)2022 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-35336057

RESUMEN

Dapsone (DpS) is an antimicrobial and antiprotozoal agent, especially used to treat leprosy. The drug shares a similar mode of action with sulfonamides. Additionally, it possesses anti-inflammatory activity, useful for treating autoimmune diseases. Here, we developed a "me-better" alternative to sulfasalazine (SSZ), a colon-specific prodrug of mesalazine (5-ASA) used as an anti-inflammatory bowel diseases drug; DpS azo-linked with two molecules of 5-ASA (AS-DpS-AS) was designed and synthesized, and its colon specificity and anti-colitic activity were evaluated. AS-DpS-AS was converted to DpS and the two molecules of 5-ASA (up to approximately 87% conversion) within 24 h after incubation in the cecal contents. Compared to SSZ, AS-DpS-AS showed greater efficiency in colonic drug delivery following oral gavage. Simultaneously, AS-DpS-AS substantially limited the systemic absorption of DpS. In a dinitrobenzene sulfonic acid-induced rat colitis model, oral AS-DpS-AS elicited better efficacy against rat colitis than oral SSZ. Moreover, intracolonic treatment with DpS and/or 5-ASA clearly showed that combined treatment with DpS and 5-ASA was more effective against rat colitis than the single treatment with either DpS or 5-ASA. These results suggest that AS-DpS-AS may be a "me-better" drug of SSZ with higher therapeutic efficacy, owing to the combined anti-colitic effects of 5-ASA and DpS.

17.
Cells ; 11(5)2022 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-35269499

RESUMEN

Protease-activated receptor 2 (PAR2) alleviates intestinal inflammation by upregulating autophagy. PAR2 also modulates tight junctions through ß-arrestin signaling. Therefore, we investigated the effect of PAR2-induced autophagy on intestinal epithelial tight junctions and permeability. RT-PCR, Western blot analysis, and immunoprecipitation were performed to investigate the underlying molecular mechanisms by which PAR2 regulates autophagy and intestinal epithelial tight junctions. Inhibition of PAR2 by GB83, a PAR2 antagonist, decreased the expression of autophagy-related and tight-junction-related factors in Caco-2 cells. Moreover, inhibition of PAR2 decreased intestinal transepithelial electrical resistance. When PAR2 was activated, intestinal permeability was maintained, but when autophagy was suppressed by chloroquine, intestinal permeability was significantly increased. In addition, the prolongation of ERK1/2 phosphorylation by PAR2-ERK1/2-ß-arrestin assembly was reduced under autophagy inhibition conditions. Therefore, PAR2 induces autophagy to regulate intestinal epithelial permeability, suggesting that it is related to the ß-arrestin-ERK1/2 pathway. In conclusion, regulating intestinal epithelial permeability through PAR2-induced autophagy can help maintain mucosal barrier integrity. Therefore, these findings suggest that the regulation of PAR2 can be a suitable strategy to treat intestinal diseases caused by permeability dysfunction.


Asunto(s)
Autofagia , Receptor PAR-2/metabolismo , Células CACO-2 , Humanos , Permeabilidad , beta-Arrestinas/metabolismo
18.
Pharmaceutics ; 15(1)2022 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-36678670

RESUMEN

We designed colon-targeted trans-cinnamic acid (tCA) and synthesized its conjugates with glutamic acid (tCA-GA) and aspartic acid (tCA-AA). We evaluated the anti-colitic activity of colon-targeted tCA using a dinitrobenzenesulfonic acid-induced rat colitis model. The conjugates lowered the distribution coefficient and Caco-2 cell permeability of tCA and converted to tCA in the cecum, with higher rates and percentages with tCA-GA than with tCA-AA. Following oral gavage, tCA-GA delivered a higher amount of tCA to the cecum and exhibited better anti-colitic effects than tCA and sulfasalazine (SSZ), which is the current treatment for inflammatory bowel disease. In the cellular assay, tCA acted as a full agonist of GPR109A (EC50: 530 µM). The anti-colitic effects of tCA-GA were significantly compromised by the co-administration of the GPR109A antagonist, mepenzolate. Collectively, colon-targeted tCA potentiated the anti-colitic activity of tCA by effectively activating GPR109A in the inflamed colon, enabling tCA to elicit therapeutic superiority over SSZ.

19.
Pharmaceuticals (Basel) ; 14(11)2021 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-34832874

RESUMEN

Tranilast (TRL), a synthetic derivative of a tryptophan metabolite, is an anti-allergic drug used to treat bronchial asthma. We investigated how TRL activated the nuclear factor-erythroid 2 p45-related factor 2 (Nrf2)-hemeoxygenase-1 (HO-1) pathway based on the electrophilic chemistry of the drug and whether TRL activity contributed to the treatment of rat colitis. In human colon carcinoma cells, TRL activated Nrf2, as represented by an increase in nuclear Nrf2 and induction of Nrf2-dependent luciferase and, subsequently, HO-1, a target gene product of Nrf2. TRL activation of Nrf2 and induction of HO-1 were completely prevented by chemical reduction of the electrophilic functional group (α, ß-unsaturated carbonyl group) in the drug. In parallel, TRL was reactive with the nucleophilic thiol group in N-acetylcysteine, forming a covalent adduct. Moreover, TRL, but not reduced TRL, binds to Kelch-like ECH-associated protein 1 (KEAP1), releasing Nrf2. TRL administration ameliorated colonic damage and inflammation in rats with dinitrobenzene sulfonic acid-induced colitis, which was partly compromised by the chemical reduction of TRL or co-treatment with an HO-1 inhibitor. Our results suggest that TRL activated the Nrf2-HO-1 pathway via covalent binding to KEAP1, partly contributing to TRL amelioration in rat colitis.

20.
Pharmaceutics ; 13(9)2021 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-34575488

RESUMEN

Cyclosporine A (CsA) is a potent immunosuppressant for treating ulcerative colitis (UC). However, owing to severe systemic side effects, CsA application in UC therapy remains limited. Herein, a colon-targeted drug delivery system consisting of CsA crystals (CsAc)-loaded, Eudragit S 100 (ES)-coated alginate microparticles (CsAc-EAMPs) was established to minimize systemic side effects and enhance the therapeutic efficacy of CsA. Homogeneously-sized CsAs (3.1 ± 0.9 µm) were prepared by anti-solvent precipitation, followed by the fabrication of 47.1 ± 6.5 µm-sized CsAc-EAMPs via ionic gelation and ES coating. CsAc-EAMPs exhibited a high drug loading capacity (48 ± 5%) and a CsA encapsulation efficacy of 77 ± 9%. The in vitro drug release study revealed that CsA release from CsAc-EAMPs was suppressed under conditions simulating the stomach and small intestine, resulting in minimized systemic absorption and side effects. Following exposure to the simulated colon conditions, along with ES dissolution and disintegration of alginate microparticles, CsA was released from CsAc-EAMPs, exhibiting a sustained-release profile for up to 24 h after administration. Given the effective colonic delivery of CsA molecules, CsAc-EAMPs conferred enhanced anti-inflammatory activity in mouse model of dextran sulfate sodium (DSS)-induced colitis. These findings suggest that CsAc-EAMPs is a promising drug delivery system for treating UC.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA