Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 10(1): 12864, 2020 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-32733053

RESUMEN

Pharmacological modulation of class I histone deacetylases (HDAC) has been evaluated as a therapeutic strategy for pulmonary hypertension (PH) in experimental models of PH. However, information of their expression, regulation and transcriptional targets in human PH and the therapeutic potential of isoform-selective enzyme modulation are lacking. Comprehensive analysis of expression and regulation of class I HDACs (HDAC1, HDAC2, HDAC3 and HDAC8) was performed in cardiopulmonary tissues and adventitial fibroblasts isolated from pulmonary arteries (PAAF) of idiopathic pulmonary arterial hypertension (IPAH) patients and healthy donors. Cellular functions and transcriptional targets of HDAC enzymes were investigated. Therapeutic effects of pan-HDAC (Vorinostat), class-selective (VPA) and isoform-selective (CAY10398, Romidepsin, PCI34051) HDAC inhibitors were evaluated ex vivo (IPAH-PAAF, IPAH-PASMC) and in vivo (rat chronic hypoxia-induced PH and zebrafish angiogenesis). Our screening identifies dysregulation of class I HDAC isoforms in IPAH. Particularly, HDAC1 and HDAC8 were consistently increased in IPAH-PAs and IPAH-PAAFs, whereas HDAC2 and HDAC8 showed predominant localization with ACTA2-expressing cells in extensively remodeled IPAH-PAs. Hypoxia not only significantly modulated protein levels of deacetylase (HDAC8), but also significantly caused dynamic changes in the global histone lysine acetylation levels (H3K4ac, H3K9/K14ac and H3K27ac). Importantly, isoform-specific RNA-interference revealed that HDAC isoforms regulate distinct subset of transcriptome in IPAH-PAAFs. Reduced transcript levels of KLF2 in IPAH-PAAFs was augmented by HDAC8 siRNA and HDAC inhibitors, which also attenuated IPAH-associated hyperproliferation and apoptosis-resistance ex vivo, and mitigated chronic hypoxia-induced established PH in vivo, at variable degree. Class I HDAC isoforms are significantly dysregulated in human PAH. Isoform-selective HDAC inhibition is a viable approach to circumvent off-target effects.


Asunto(s)
Histona Desacetilasas/uso terapéutico , Hipertensión Pulmonar/tratamiento farmacológico , Animales , Células Cultivadas , Depsipéptidos/química , Depsipéptidos/farmacología , Depsipéptidos/uso terapéutico , Histona Desacetilasas/química , Histona Desacetilasas/farmacología , Humanos , Técnicas In Vitro , Isoenzimas , Ratas , Relación Estructura-Actividad , Transcriptoma/efectos de los fármacos , Vorinostat/química , Vorinostat/farmacología , Vorinostat/uso terapéutico , Pez Cebra
2.
J Proteome Res ; 13(4): 2162-74, 2014 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-24611545

RESUMEN

The zebrafish has become a widely used model organism employed for developmental studies, live cell imaging, and genetic screens. High-resolution transcriptional profiles of different developmental and adult stages of the fish and of its various organs were generated, which are readily accessible via the ZFIN database. In contrast, quantitative proteomic studies of zebrafish organs are still in their infancy. Here, we used the SILAC (stable isotope labeling by amino acids in cell culture) zebrafish as a "spike-in" reference to generate a protein atlas of nine organs including gills, brain, heart, muscle, liver, spleen, skin, swim bladder, and testis. Single-shot 4 h LC gradients coupled to a Quadrupole-Orbitrap (QExactive) instrument allowed identification of over 5000 proteins in less than 5 days, of which more than 70% were quantified in triplicate. Identified proteins were subjected to BLAST searches and Gene Ontology classification to improve annotation of zebrafish proteins and obtain insights into potential functions. Comparison to mouse tissue proteome data sets revealed differences and similarities in the protein composition of zebrafish versus mouse organs. We reason that the data set will be helpful for the proteomic characterization of zebrafish organs and identification of tissue-specific proteins that might serve as biomarkers. Our approach provides a complementary view into the biochemistry of zebrafish models and will assist large-scale protein quantification in zebrafish disease models.


Asunto(s)
Marcaje Isotópico/métodos , Especificidad de Órganos/fisiología , Proteoma/análisis , Proteoma/metabolismo , Proteómica/métodos , Proteínas de Pez Cebra/análisis , Proteínas de Pez Cebra/metabolismo , Animales , Encéfalo/metabolismo , Humanos , Hígado/metabolismo , Ratones , Músculos/metabolismo , Miocardio/metabolismo , Proteoma/genética , Pez Cebra , Proteínas de Pez Cebra/genética
3.
Mol Cell Proteomics ; 12(6): 1502-12, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23412571

RESUMEN

Quantitative proteomics is an important tool to study biological processes, but so far it has been challenging to apply to zebrafish. Here, we describe a large scale quantitative analysis of the zebrafish proteome using a combination of stable isotope labeling and liquid chromatography-mass spectrometry (LC-MS). Proteins derived from the fully labeled fish were used as a standard to quantify changes during embryonic heart development. LC-MS-assisted analysis of the proteome of activated leukocyte cell adhesion molecule zebrafish morphants revealed a down-regulation of components of the network required for cell adhesion and maintenance of cell shape as well as secondary changes due to arrest of cellular differentiation. Quantitative proteomics in zebrafish using the stable isotope-labeling technique provides an unprecedented resource to study developmental processes in zebrafish.


Asunto(s)
Moléculas de Adhesión Celular/genética , Proteínas de Peces/genética , Regulación del Desarrollo de la Expresión Génica , Corazón/embriología , Morfogénesis/genética , Proteoma/genética , Pez Cebra/genética , Animales , Adhesión Celular , Moléculas de Adhesión Celular/metabolismo , Forma de la Célula , Cromatografía Liquida , Proteínas de Peces/metabolismo , Perfilación de la Expresión Génica , Marcaje Isotópico , Leucocitos/citología , Leucocitos/metabolismo , Espectrometría de Masas , Proteoma/metabolismo , Pez Cebra/embriología , Pez Cebra/metabolismo
4.
Blood ; 121(15): 3041-50, 2013 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-23386126

RESUMEN

Angiogenesis, defined as blood vessel formation from a preexisting vasculature, is governed by multiple signal cascades including integrin receptors, in particular integrin αVß3. Here we identify the endothelial cell (EC)-secreted factor epidermal growth factor-like protein 7 (EGFL7) as a novel specific ligand of integrin αVß3, thus providing mechanistic insight into its proangiogenic actions in vitro and in vivo. Specifically, EGFL7 attaches to the extracellular matrix and by its interaction with integrin αVß3 increases the motility of EC, which allows EC to move on a sticky underground during vessel remodeling. We provide evidence that the deregulation of EGFL7 in zebrafish embryos leads to a severe integrin-dependent malformation of the caudal venous plexus, pointing toward the significance of EGFL7 in vessel development. In biopsy specimens of patients with neurologic diseases, vascular EGFL7 expression rose with increasing EC proliferation. Further, EGFL7 became upregulated in vessels of the stroke penumbra using a mouse model of reversible middle cerebral artery occlusion. Our data suggest that EGFL7 expression depends on the remodeling state of the existing vasculature rather than on the phenotype of neurologic disease analyzed. In sum, our work sheds a novel light on the molecular mechanism EGFL7 engages to govern physiological and pathological angiogenesis.


Asunto(s)
Vasos Sanguíneos/metabolismo , Factores de Crecimiento Endotelial/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Integrina alfaVbeta3/metabolismo , Secuencias de Aminoácidos/genética , Animales , Proteínas de Unión al Calcio , Adhesión Celular/genética , Movimiento Celular/genética , Familia de Proteínas EGF , Embrión no Mamífero/irrigación sanguínea , Embrión no Mamífero/metabolismo , Factores de Crecimiento Endotelial/genética , Factores de Crecimiento Endotelial/farmacología , Matriz Extracelular/metabolismo , Expresión Génica , Células HEK293 , Humanos , Inmunohistoquímica , Inmunoprecipitación , Infarto de la Arteria Cerebral Media/genética , Infarto de la Arteria Cerebral Media/metabolismo , Integrina alfaVbeta3/genética , Ratones , Ratones Desnudos , Fosforilación/efectos de los fármacos , Unión Proteica , Interferencia de ARN , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Pez Cebra
5.
Circ Res ; 112(6): 924-34, 2013 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-23362312

RESUMEN

RATIONALE: Polarity proteins are involved in the apico-basal orientation of epithelial cells, but relatively little is known regarding their function in mesenchymal cells. OBJECTIVE: We hypothesized that polarity proteins also contribute to endothelial processes like angiogenesis. METHODS AND RESULTS: Screening of endothelial cells revealed high expression of the polarity protein Scribble (Scrib). On fibronectin-coated carriers Scrib siRNA (siScrib) blocked directed but not random migration of human umbilical vein endothelial cells and led to an increased number and disturbed orientation of cellular lamellipodia. Coimmunoprecipitation/mass spectrometry and glutathione S-transferase (GST) pulldown assays identified integrin α5 as a novel Scrib interacting protein. By total internal reflection fluorescence (TIRF) microscopy, Scrib and integrin α5 colocalize at the basal plasma membrane of endothelial cells. Western blot and fluorescence activated cell sorting (FACS) analysis revealed that silencing of Scrib reduced the protein amount and surface expression of integrin α5 whereas surface expression of integrin αV was unaffected. Moreover, in contrast to fibronectin, the ligand of integrin α5, directional migration on collagen mediated by collagen-binding integrins was unaffected by siScrib. Mechanistically, Scrib supported integrin α5 recycling and protein stability by blocking its interaction with Rab7a, its translocation into lysosomes, and its subsequent degradation by pepstatin-sensitive proteases. In siScrib-treated cells, reinduction of the wild-type protein but not of PSD95, Dlg, ZO-1 (PDZ), or leucine rich repeat domain mutants restored integrin α5 abundance and directional cell migration. The downregulation of Scrib function in Tg(kdrl:EGFP)(s843) transgenic zebrafish embryos delayed the angiogenesis of intersegmental vessels. CONCLUSIONS: Scrib is a novel regulator of integrin α5 turnover and sorting, which is required for oriented cell migration and sprouting angiogenesis.


Asunto(s)
Movimiento Celular/fisiología , Polaridad Celular/fisiología , Células Endoteliales de la Vena Umbilical Humana/fisiología , Integrina alfa5/metabolismo , Proteínas de la Membrana/fisiología , Neovascularización Fisiológica/fisiología , Proteínas Supresoras de Tumor/fisiología , Animales , Ensayos de Migración Celular , Movimiento Celular/efectos de los fármacos , Células Endoteliales/fisiología , Humanos , Integrina alfaV/metabolismo , Proteínas de la Membrana/antagonistas & inhibidores , Ratones , ARN Interferente Pequeño/farmacología , Proteínas Supresoras de Tumor/antagonistas & inhibidores
6.
J Cell Sci ; 126(Pt 2): 580-92, 2013 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-23178947

RESUMEN

Aggregation of misfolded proteins and the associated loss of neurons are considered a hallmark of numerous neurodegenerative diseases. Optineurin is present in protein inclusions observed in various neurodegenerative diseases including amyotrophic lateral sclerosis (ALS), Huntington's disease, Alzheimer's disease, Parkinson's disease, Creutzfeld-Jacob disease and Pick's disease. Optineurin deletion mutations have also been described in ALS patients. However, the role of optineurin in mechanisms of protein aggregation remains unclear. In this report, we demonstrate that optineurin recognizes various protein aggregates via its C-terminal coiled-coil domain in a ubiquitin-independent manner. We also show that optineurin depletion significantly increases protein aggregation in HeLa cells and that morpholino-silencing of the optineurin ortholog in zebrafish causes the motor axonopathy phenotype similar to a zebrafish model of ALS. A more severe phenotype is observed when optineurin is depleted in zebrafish carrying ALS mutations. Furthermore, TANK1 binding kinase 1 (TBK1) is colocalized with optineurin on protein aggregates and is important in clearance of protein aggregates through the autophagy-lysosome pathway. TBK1 phosphorylates optineurin at serine 177 and regulates its ability to interact with autophagy modifiers. This study provides evidence for a ubiquitin-independent function of optineurin in autophagic clearance of protein aggregates as well as additional relevance for TBK1 as an upstream regulator of the autophagic pathway.


Asunto(s)
Enfermedades Neurodegenerativas/metabolismo , Factor de Transcripción TFIIIA/metabolismo , Ubiquitina/metabolismo , Animales , Autofagia/fisiología , Proteínas de Ciclo Celular , Modelos Animales de Enfermedad , Células HeLa , Humanos , Proteínas de Transporte de Membrana , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Enfermedades Neurodegenerativas/genética , Fosforilación , Unión Proteica , Pez Cebra
7.
Cardiovasc Res ; 96(2): 276-85, 2012 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-22865640

RESUMEN

AIMS: The ventricular wall of the heart is composed of trabeculated and compact layers, which are separated by yet unknown processes during embryonic development. Here, we wanted to explore the role of Notch2 and Numb/Numblike for myocardial trabeculation and compaction. METHODS AND RESULTS: We found that Notch2 activity is specifically down-regulated in the compact layer during cardiac development in the mouse. The biological role of Notch2 down-regulation was investigated by the expression of constitutively active Notch2 in the myocardium of transgenic mice, resulting in hypertrabeculation, reduced compaction, and ventricular septum defects. To disclose the mechanism that inhibited Notch2 activity during the formation of myocardial layers, we analysed potential suppressors of Notch signalling. We unveiled that concomitant but not separate ablation of Numb and Numblike in the developing heart leads to increased Notch2 activity along with hypertrabeculation, reduced compaction, and ventricular septum defects, phenocopying effects gained by overexpression of constitutively active Notch2. Expression profiling revealed a strong up-regulation of Bmp10 in Numb/Numblike mutant hearts, which might also interfere with trabeculation and compaction. CONCLUSION: This study identified potential novel roles of Numb/Numblike in regulating trabeculation and compaction by inhibiting Notch2 and Bmp10 signalling.


Asunto(s)
Corazón/embriología , Proteínas de la Membrana/metabolismo , Miocardio/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Receptor Notch2/metabolismo , Animales , Proteínas Morfogenéticas Óseas/metabolismo , Embrión de Mamíferos/metabolismo , Embrión no Mamífero/metabolismo , Femenino , Técnicas de Silenciamiento del Gen , Genes Reporteros , Proteína Homeótica Nkx-2.5 , Proteínas de Homeodominio/metabolismo , Péptidos y Proteínas de Señalización Intracelular , Proteínas de la Membrana/genética , Ratones , Proteínas del Tejido Nervioso/genética , Embarazo , Factores de Transcripción/metabolismo , Regulación hacia Arriba , Pez Cebra
8.
Dev Cell ; 23(1): 58-70, 2012 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-22771034

RESUMEN

Morphogenesis of the heart requires tight control of cardiac progenitor cell specification, expansion, and differentiation. Retinoic acid (RA) signaling restricts expansion of the second heart field (SHF), serving as an important morphogen in heart development. Here, we identify the LIM domain protein Ajuba as a crucial regulator of the SHF progenitor cell specification and expansion. Ajuba-deficient zebrafish embryos show an increased pool of Isl1(+) cardiac progenitors and, subsequently, dramatically increased numbers of cardiomyocytes at the arterial and venous poles. Furthermore, we show that Ajuba binds Isl1, represses its transcriptional activity, and is also required for autorepression of Isl1 expression in an RA-dependent manner. Lack of Ajuba abrogates the RA-dependent restriction of Isl1(+) cardiac cells. We conclude that Ajuba plays a central role in regulating the SHF during heart development by linking RA signaling to the function of Isl1, a key transcription factor in cardiac progenitor cells.


Asunto(s)
Células Madre Embrionarias/fisiología , Corazón/embriología , Proteínas con Dominio LIM/fisiología , Proteínas con Homeodominio LIM/metabolismo , Proteínas Represoras/fisiología , Factores de Transcripción/metabolismo , Proteínas de Pez Cebra/fisiología , Pez Cebra/embriología , Animales , Animales Modificados Genéticamente , Células Madre Embrionarias/citología , Femenino , Células HEK293 , Proteína Homeótica Nkx-2.5 , Humanos , Proteínas con Dominio LIM/genética , Proteínas con Homeodominio LIM/genética , Masculino , Ratones , Miocitos Cardíacos/citología , Miocitos Cardíacos/fisiología , Células 3T3 NIH , Proteínas Represoras/genética , Transducción de Señal/fisiología , Factores de Transcripción/genética , Tretinoina/fisiología , Pez Cebra/genética , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
9.
EMBO J ; 31(15): 3309-22, 2012 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-22751148

RESUMEN

F-BAR proteins are multivalent adaptors that link plasma membrane and cytoskeleton and coordinate cellular processes such as membrane protrusion and migration. Yet, little is known about the function of F-BAR proteins in vivo. Here we report, that the F-BAR protein NOSTRIN is necessary for proper vascular development in zebrafish and postnatal retinal angiogenesis in mice. The loss of NOSTRIN impacts on the migration of endothelial tip cells and leads to a reduction of tip cell filopodia number and length. NOSTRIN forms a complex with the GTPase Rac1 and its exchange factor Sos1 and overexpression of NOSTRIN in cells induces Rac1 activation. Furthermore, NOSTRIN is required for fibroblast growth factor 2 dependent activation of Rac1 in primary endothelial cells and the angiogenic response to fibroblast growth factor 2 in the in vivo matrigel plug assay. We propose a novel regulatory circuit, in which NOSTRIN assembles a signalling complex containing FGFR1, Rac1 and Sos1 thereby facilitating the activation of Rac1 in endothelial cells during developmental angiogenesis.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/fisiología , Vasos Sanguíneos/embriología , Proteínas de Unión al ADN/fisiología , Factores de Crecimiento de Fibroblastos/metabolismo , Neovascularización Fisiológica/genética , Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Animales Modificados Genéticamente , Animales Recién Nacidos , Vasos Sanguíneos/crecimiento & desarrollo , Vasos Sanguíneos/fisiología , Células CHO , Células Cultivadas , Cricetinae , Cricetulus , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Embrión de Mamíferos , Embrión no Mamífero , Factores de Crecimiento de Fibroblastos/fisiología , Ratones , Ratones Noqueados , Modelos Biológicos , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/metabolismo , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/fisiología , Transducción de Señal/genética , Transducción de Señal/fisiología , Pez Cebra/embriología , Pez Cebra/genética
10.
Proc Natl Acad Sci U S A ; 109(25): 9995-10000, 2012 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-22665795

RESUMEN

Fatty acid epoxides are important lipid signaling molecules involved in the regulation of vascular tone and homeostasis. Tissue and plasma levels of these mediators are determined by the activity of cytochrome P450 epoxygenases and the soluble epoxide hydrolase (sEH), and targeting the latter is an effective way of manipulating epoxide levels in vivo. We investigated the role of the sEH in regulating the mobilization and proliferation of progenitor cells with vasculogenic/reparative potential. Our studies revealed that sEH down-regulation/inhibition impaired the development of the caudal vein plexus in zebrafish, and decreased the numbers of lmo2/cmyb-positive progenitor cells therein. In mice sEH inactivation attenuated progenitor cell proliferation (spleen colony formation), but the sEH products 12,13-dihydroxyoctadecenoic acid (12,13-DiHOME) and 11,12- dihydroxyeicosatrienoic acid stimulated canonical Wnt signaling and rescued the effects of sEH inhibition. In murine bone marrow, the epoxide/diol content increased during G-CSF-induced progenitor cell expansion and mobilization, and both mobilization and spleen colony formation were reduced in sEH(-/-) mice. Similarly, sEH(-/-) mice showed impaired functional recovery following hindlimb ischemia, which was rescued following either the restoration of bone marrow sEH activity or treatment with 12,13-DiHOME. Thus, sEH activity is required for optimal progenitor cell proliferation, whereas long-term sEH inhibition is detrimental to progenitor cell proliferation, mobilization, and vascular repair.


Asunto(s)
Epóxido Hidrolasas/metabolismo , Ácidos Grasos/metabolismo , Células Madre Hematopoyéticas/citología , Animales , Epóxido Hidrolasas/genética , Técnicas de Silenciamiento del Gen , Ratones , Ratones Endogámicos C57BL , Pez Cebra
11.
Dev Biol ; 363(2): 438-50, 2012 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-22290329

RESUMEN

The Popeye domain containing (Popdc) genes encode a family of transmembrane proteins with an evolutionary conserved Popeye domain. These genes are abundantly expressed in striated muscle tissue, however their function is not well understood. In this study we have investigated the role of the popdc2 gene in zebrafish. Popdc2 transcripts were detected in the embryonic myocardium and transiently in the craniofacial and tail musculature. Morpholino oligonucleotide-mediated knockdown of popdc2 resulted in aberrant development of skeletal muscle and heart. Muscle segments in the trunk were irregularly shaped and craniofacial muscles were severely reduced or even missing. In the heart, pericardial edema was prevalent in the morphants and heart chambers were elongated and looping was abnormal. These pathologies in muscle and heart were alleviated after reducing the morpholino concentration. However the heart still was abnormal displaying cardiac arrhythmia at later stages of development. Optical recordings of cardiac contractility revealed irregular ventricular contractions with a 2:1, or 3:1 atrial/ventricular conduction ratio, which caused a significant reduction in heart frequency. Recordings of calcium transients with high spatiotemporal resolution using a transgenic calcium indicator line (Tg(cmlc2:gCaMP)(s878)) and SPIM microscopy confirmed the presence of a severe arrhythmia phenotype. Our results identify popdc2 as a gene important for striated muscle differentiation and cardiac morphogenesis. In addition it is required for the development of the cardiac conduction system.


Asunto(s)
Corazón/embriología , Desarrollo de Músculos/genética , Músculo Esquelético/embriología , Organogénesis/genética , Proteínas de Pez Cebra/genética , Pez Cebra/embriología , Animales , Arritmias Cardíacas/genética , Calcio/metabolismo , Regulación del Desarrollo de la Expresión Génica , Corazón/anatomía & histología , Frecuencia Cardíaca/genética , Músculo Esquelético/anatomía & histología , Pericardio/anatomía & histología , Pericardio/embriología , Pez Cebra/genética
12.
Development ; 138(20): 4499-509, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21937601

RESUMEN

The extracellular matrix is crucial for organogenesis. It is a complex and dynamic component that regulates cell behavior by modulating the activity, bioavailability and presentation of growth factors to cell surface receptors. Here, we determined the role of the extracellular matrix protein Nephronectin (Npnt) in heart development using the zebrafish model system. The vertebrate heart is formed as a linear tube in which myocardium and endocardium are separated by a layer of extracellular matrix termed the cardiac jelly. During heart development, the cardiac jelly swells at the atrioventricular (AV) canal, which precedes valve formation. Here, we show that Npnt expression correlates with this process. Morpholino-mediated knockdown of Npnt prevents proper valve leaflet formation and trabeculation and results in greater than 85% lethality at 7 days post-fertilization. The earliest observed phenotype is an extended tube-like structure at the AV boundary. In addition, the expression of myocardial genes involved in cardiac valve formation (cspg2, fibulin 1, tbx2b, bmp4) is expanded and endocardial cells along the extended tube-like structure exhibit characteristics of AV cells (has2, notch1b and Alcam expression, cuboidal cell shape). Inhibition of has2 in npnt morphants rescues the endocardial, but not the myocardial, expansion. By contrast, reduction of BMP signaling in npnt morphants reduces the ectopic expression of myocardial and endocardial AV markers. Taken together, our results identify Npnt as a novel upstream regulator of Bmp4-Has2 signaling that plays a crucial role in AV canal differentiation.


Asunto(s)
Proteína Morfogenética Ósea 4/metabolismo , Cojinetes Endocárdicos/embriología , Cojinetes Endocárdicos/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Glucuronosiltransferasa/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Pez Cebra/metabolismo , Animales , Animales Modificados Genéticamente , Secuencia de Bases , Proteína Morfogenética Ósea 4/genética , Cartilla de ADN/genética , Proteínas de la Matriz Extracelular/antagonistas & inhibidores , Proteínas de la Matriz Extracelular/genética , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Glucuronosiltransferasa/genética , Corazón/embriología , Corazón/crecimiento & desarrollo , Válvulas Cardíacas/embriología , Válvulas Cardíacas/metabolismo , Hialuronano Sintasas , Modelos Cardiovasculares , Ratas , Transducción de Señal , Pez Cebra/genética , Proteínas de Pez Cebra/antagonistas & inhibidores , Proteínas de Pez Cebra/genética
13.
J Biol Chem ; 286(14): 12483-94, 2011 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-21288905

RESUMEN

CTCF nuclear factor regulates many aspects of gene expression, largely as a transcriptional repressor or via insulator function. Its roles in cellular differentiation are not clear. Here we show an unexpected role for CTCF in myogenesis. Ctcf is expressed in myogenic structures during mouse and zebrafish development. Gain- and loss-of-function approaches in C2C12 cells revealed CTCF as a modulator of myogenesis by regulating muscle-specific gene expression. We addressed the functional connection between CTCF and myogenic regulatory factors (MRFs). CTCF enhances the myogenic potential of MyoD and myogenin and establishes direct interactions with MyoD, indicating that CTCF regulates MRF-mediated muscle differentiation. Indeed, CTCF modulates functional interactions between MyoD and myogenin in co-activation of muscle-specific gene expression and facilitates MyoD recruitment to a muscle-specific promoter. Finally, ctcf loss-of-function experiments in zebrafish embryos revealed a critical role of CTCF in myogenic development and linked CTCF to broader aspects of development via regulation of Wnt signaling. We conclude that CTCF modulates MRF functional interactions in the orchestration of myogenesis.


Asunto(s)
Desarrollo de Músculos/fisiología , Factores Reguladores Miogénicos/metabolismo , Proteínas Represoras/metabolismo , Animales , Factor de Unión a CCCTC , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Línea Celular , Inmunoprecipitación de Cromatina , Embrión de Mamíferos/metabolismo , Embrión no Mamífero/metabolismo , Inmunoprecipitación , Hibridación in Situ , Ratones , Desarrollo de Músculos/genética , Proteína MioD/genética , Proteína MioD/metabolismo , Factores Reguladores Miogénicos/genética , Miogenina/genética , Miogenina/metabolismo , Unión Proteica/genética , Unión Proteica/fisiología , ARN Interferente Pequeño , Proteínas Represoras/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Somitos/metabolismo , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Pez Cebra , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
14.
BMC Genomics ; 10: 100, 2009 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-19267916

RESUMEN

BACKGROUND: High throughput techniques have generated a huge set of biological data, which are deposited in various databases. Efficient exploitation of these databases is often hampered by a lack of appropriate tools, which allow easy and reliable identification of genes that miss functional characterization but are correlated with specific biological conditions (e.g. organotypic expression). RESULTS: We have developed a simple algorithm (DGSA = Database-dependent Gene Selection and Analysis) to identify genes with unknown functions involved in organ development concentrating on the heart. Using our approach, we identified a large number of yet uncharacterized genes, which are expressed during heart development. An initial functional characterization of genes by loss-of-function analysis employing morpholino injections into zebrafish embryos disclosed severe developmental defects indicating a decisive function of selected genes for developmental processes. CONCLUSION: We conclude that DGSA is a versatile tool for database mining allowing efficient selection of uncharacterized genes for functional analysis.


Asunto(s)
Algoritmos , Sistemas de Administración de Bases de Datos , Perfilación de la Expresión Génica/métodos , Miocardio/metabolismo , Animales , Biología Computacional , Bases de Datos Genéticas , Regulación del Desarrollo de la Expresión Génica , Ratones , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Análisis de Secuencia de ARN , Pez Cebra/embriología , Pez Cebra/genética
15.
PLoS Biol ; 6(5): e109, 2008 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-18479184

RESUMEN

Vertebrate hearts depend on highly specialized cardiomyocytes that form the cardiac conduction system (CCS) to coordinate chamber contraction and drive blood efficiently and unidirectionally throughout the organism. Defects in this specialized wiring system can lead to syncope and sudden cardiac death. Thus, a greater understanding of cardiac conduction development may help to prevent these devastating clinical outcomes. Utilizing a cardiac-specific fluorescent calcium indicator zebrafish transgenic line, Tg(cmlc2:gCaMP)(s878), that allows for in vivo optical mapping analysis in intact animals, we identified and analyzed four distinct stages of cardiac conduction development that correspond to cellular and anatomical changes of the developing heart. Additionally, we observed that epigenetic factors, such as hemodynamic flow and contraction, regulate the fast conduction network of this specialized electrical system. To identify novel regulators of the CCS, we designed and performed a new, physiology-based, forward genetic screen and identified for the first time, to our knowledge, 17 conduction-specific mutations. Positional cloning of hobgoblin(s634) revealed that tcf2, a homeobox transcription factor gene involved in mature onset diabetes of the young and familial glomerulocystic kidney disease, also regulates conduction between the atrium and the ventricle. The combination of the Tg(cmlc2:gCaMP)(s878) line/in vivo optical mapping technique and characterization of cardiac conduction mutants provides a novel multidisciplinary approach to further understand the molecular determinants of the vertebrate CCS.


Asunto(s)
Sistema de Conducción Cardíaco/fisiología , Pez Cebra/genética , Pez Cebra/fisiología , Animales , Animales Modificados Genéticamente , Electrofisiología Cardíaca , Conexina 43/genética , Conexina 43/metabolismo , Conexinas/genética , Conexinas/metabolismo , Embrión no Mamífero/embriología , Embrión no Mamífero/fisiología , Regulación del Desarrollo de la Expresión Génica , Sistema de Conducción Cardíaco/embriología , Sistema de Conducción Cardíaco/metabolismo , Hemodinámica , Mutación , Miocardio/citología , Pez Cebra/embriología , Proteína alfa-5 de Unión Comunicante
16.
Dev Biol ; 307(1): 29-42, 2007 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-17531218

RESUMEN

Formation of a functional vasculature during mammalian development is essential for embryonic survival. In addition, imbalance in blood vessel growth contributes to the pathogenesis of numerous disorders. Most of our understanding of vascular development and blood vessel growth comes from investigating the Vegf signaling pathway as well as the recent observation that molecules involved in axon guidance also regulate vascular patterning. In order to take an unbiased, yet focused, approach to identify novel genes regulating vascular development, we performed a three-step ENU mutagenesis screen in zebrafish. We first screened live embryos visually, evaluating blood flow in the main trunk vessels, which form by vasculogenesis, and the intersomitic vessels, which form by angiogenesis. Embryos that displayed reduced or absent circulation were fixed and stained for endogenous alkaline phosphatase activity to reveal blood vessel morphology. All putative mutants were then crossed into the Tg(flk1:EGFP)(s843) transgenic background to facilitate detailed examination of endothelial cells in live and fixed embryos. We screened 4015 genomes and identified 30 mutations affecting various aspects of vascular development. Specifically, we identified 3 genes (or loci) that regulate the specification and/or differentiation of endothelial cells, 8 genes that regulate vascular tube and lumen formation, 8 genes that regulate vascular patterning, and 11 genes that regulate vascular remodeling, integrity and maintenance. Only 4 of these genes had previously been associated with vascular development in zebrafish illustrating the value of this focused screen. The analysis of the newly defined loci should lead to a greater understanding of vascular development and possibly provide new drug targets to treat the numerous pathologies associated with dysregulated blood vessel growth.


Asunto(s)
Vasos Sanguíneos/crecimiento & desarrollo , Genómica/métodos , Transgenes , Animales , Vasos Sanguíneos/embriología , Embrión no Mamífero , Células Endoteliales/citología , Mutagénesis , Mutación , Neovascularización Fisiológica , Vertebrados , Pez Cebra
17.
Dev Cell ; 12(3): 403-13, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17336906

RESUMEN

While many factors that modulate the morphogenesis and patterning of the embryonic heart have been identified, relatively little is known about the molecular events that regulate the differentiation of progenitor cells fated to form the myocardium. Here, we show that zebrafish grinch (grn) mutants form a reduced number of myocardial progenitor cells, which results in a profound deficit in cardiomyocyte numbers in the most severe cases. We show that grn encodes the G protein-coupled receptor (GPCR) Agtrl1b, a known regulator of adult cardiovascular physiology. Ectopic expression of Apelin, an Agtrl1b ligand, results in the complete absence of cardiomyocytes. Data from transplantation and transgenic approaches indicate that Agtrl1 signaling plays a cell-autonomous role in myocardial specification, with activity being required coincident with the onset of gastrulation movements. These results support a model in which agtrl1b regulates the migration of cells fated to form myocardial progenitors.


Asunto(s)
Corazón/embriología , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Mioblastos Cardíacos/metabolismo , Organogénesis/genética , Receptores Acoplados a Proteínas G/metabolismo , Proteínas de Xenopus/metabolismo , Proteínas de Pez Cebra/fisiología , Animales , Animales Modificados Genéticamente/embriología , Animales Modificados Genéticamente/genética , Receptores de Apelina , Diferenciación Celular/genética , Movimiento Celular/genética , Gástrula/citología , Gástrula/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Péptidos y Proteínas de Señalización Intercelular/genética , Mesodermo/citología , Mesodermo/metabolismo , Mutación/genética , Mioblastos Cardíacos/citología , Miocardio/citología , Miocardio/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/fisiología , Proteínas de Xenopus/genética , Pez Cebra , Proteínas de Pez Cebra/genética
18.
Dev Dyn ; 236(4): 1025-35, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17326133

RESUMEN

Conditional targeted cell ablation in zebrafish would greatly expand the utility of this genetic model system in developmental and regeneration studies, given its extensive regenerative capabilities. Here, we show that, by combining chemical and genetic tools, one can ablate cells in a temporal- and spatial-specific manner in zebrafish larvae. For this purpose, we used the bacterial Nitroreductase (NTR) enzyme to convert the prodrug Metronidazole (Mtz) into a cytotoxic DNA cross-linking agent. To investigate the efficiency of this system, we targeted three different cell lineages in the heart, pancreas, and liver. Expression of the fusion protein Cyan Fluorescent Protein-NTR (CFP-NTR) under control of tissue-specific promoters allowed us to induce the death of cardiomyocytes, pancreatic beta-cells, and hepatocytes at specific times. Moreover, we have observed that Mtz can be efficiently washed away and that, upon Mtz withdrawal, the profoundly affected tissue can quickly recover. These findings show that the NTR/Mtz system is effective for temporally and spatially controlled cell ablation in zebrafish, thereby constituting a most promising genetic tool to analyze tissue interactions as well as the mechanisms underlying regeneration.


Asunto(s)
Genes Transgénicos Suicidas , Ingeniería Genética/métodos , Regeneración/fisiología , Pez Cebra/fisiología , Animales , Animales Modificados Genéticamente , Embrión no Mamífero , Regulación del Desarrollo de la Expresión Génica , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Corazón/fisiología , Hepatocitos/fisiología , Células Secretoras de Insulina/fisiología , Modelos Biológicos , Miocardio/citología , Miocitos Cardíacos/citología , Nitrorreductasas/genética , Nitrorreductasas/metabolismo , Especificidad de Órganos/genética , Fenotipo , Regiones Promotoras Genéticas , Pez Cebra/embriología , Pez Cebra/genética
19.
Curr Biol ; 17(3): 252-9, 2007 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-17276918

RESUMEN

In vertebrates, the morphogenetic assembly of the primitive heart tube requires the medial migration and midline fusion of the bilateral myocardial epithelia. Several mutations that result in abnormal heart-tube formation have been studied; however, an understanding of the underlying molecular and cellular mechanisms of the migration and fusion of these epithelial sheets is far from complete. In a forward genetic screen to identify genes regulating early zebrafish heart development, we identified a mutation in the 3-hydroxy-3-methylglutaryl-Coenzyme A reductase 1b (hmgcr1b) gene that affects myocardial migration to the midline and subsequent heart-tube morphogenesis. The mutant phenotype can be rescued with injections of mevalonate, the direct product of HMGCR activity. Furthermore, treatment of embryos with pharmacological inhibitors of isoprenoid synthesis, which occurs downstream of mevalonate production, resulted in defective heart-tube formation. Interestingly, in hmgcr1b mutant embryos and embryos treated with HMGCR inhibitors, both RasCT20-eGFP and RhoaCT32-eGFP fusion proteins were mislocalized away from the plasma membrane in embryonic myocardial cells. We conclude that protein prenylation, acting downstream of Hmgcr1b and possibly through Ras and, or, Rho signaling, is required for the morphogenesis of the myocardial sheets for formation of the primitive heart tube.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Corazón/embriología , Hidroximetilglutaril-CoA Reductasas/metabolismo , Morfogénesis , Prenilación de Proteína , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Animales Modificados Genéticamente , Movimiento Celular , Embrión no Mamífero/metabolismo , Células Epiteliales/citología , Hidroximetilglutaril-CoA Reductasas/química , Hidroximetilglutaril-CoA Reductasas/genética , Ácido Mevalónico , Datos de Secuencia Molecular , Miocardio/citología , Miocitos Cardíacos/citología , Fenotipo , Mutación Puntual , Alineación de Secuencia , Pez Cebra/genética
20.
Development ; 132(18): 4193-204, 2005 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16107477

RESUMEN

Defects in cardiac valve morphogenesis and septation of the heart chambers constitute some of the most common human congenital abnormalities. Some of these defects originate from errors in atrioventricular (AV) endocardial cushion development. Although this process is being extensively studied in mouse and chick, the zebrafish system presents several advantages over these models, including the ability to carry out forward genetic screens and study vertebrate gene function at the single cell level. In this paper, we analyze the cellular and subcellular architecture of the zebrafish heart during stages of AV cushion and valve development and gain an unprecedented level of resolution into this process. We find that endocardial cells in the AV canal differentiate morphologically before the onset of epithelial to mesenchymal transformation, thereby defining a previously unappreciated step during AV valve formation. We use a combination of novel transgenic lines and fluorescent immunohistochemistry to analyze further the role of various genetic (Notch and Calcineurin signaling) and epigenetic (heart function) pathways in this process. In addition, from a large-scale forward genetic screen we identified 55 mutants, defining 48 different genes, that exhibit defects in discrete stages of AV cushion development. This collection of mutants provides a unique set of tools to further our understanding of the genetic basis of cell behavior and differentiation during AV valve development.


Asunto(s)
Diferenciación Celular/fisiología , Endocardio/embriología , Válvulas Cardíacas/embriología , Morfogénesis/fisiología , Transducción de Señal/fisiología , Pez Cebra/embriología , Animales , Animales Modificados Genéticamente , Calcineurina/metabolismo , Diferenciación Celular/genética , Análisis Mutacional de ADN , Endocardio/citología , Fluorescencia , Inmunohistoquímica , Microscopía Confocal , Receptores Notch/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA