Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
mSystems ; 9(1): e0002623, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38078749

RESUMEN

Microbial communities have evolved to colonize all ecosystems of the planet, from the deep sea to the human gut. Microbes survive by sensing, responding, and adapting to immediate environmental cues. This process is driven by signal transduction proteins such as histidine kinases, which use their sensing domains to bind or otherwise detect environmental cues and "transduce" signals to adjust internal processes. We hypothesized that an ecosystem's unique stimuli leave a sensor "fingerprint," able to identify and shed insight on ecosystem conditions. To test this, we collected 20,712 publicly available metagenomes from Host-associated, Environmental, and Engineered ecosystems across the globe. We extracted and clustered the collection's nearly 18M unique sensory domains into 113,712 similar groupings with MMseqs2. We built gradient-boosted decision tree machine learning models and found we could classify the ecosystem type (accuracy: 87%) and predict the levels of different physical parameters (R2 score: 83%) using the sensor cluster abundance as features. Feature importance enables identification of the most predictive sensors to differentiate between ecosystems which can lead to mechanistic interpretations if the sensor domains are well annotated. To demonstrate this, a machine learning model was trained to predict patient's disease state and used to identify domains related to oxygen sensing present in a healthy gut but missing in patients with abnormal conditions. Moreover, since 98.7% of identified sensor domains are uncharacterized, importance ranking can be used to prioritize sensors to determine what ecosystem function they may be sensing. Furthermore, these new predictive sensors can function as targets for novel sensor engineering with applications in biotechnology, ecosystem maintenance, and medicine.IMPORTANCEMicrobes infect, colonize, and proliferate due to their ability to sense and respond quickly to their surroundings. In this research, we extract the sensory proteins from a diverse range of environmental, engineered, and host-associated metagenomes. We trained machine learning classifiers using sensors as features such that it is possible to predict the ecosystem for a metagenome from its sensor profile. We use the optimized model's feature importance to identify the most impactful and predictive sensors in different environments. We next use the sensor profile from human gut metagenomes to classify their disease states and explore which sensors can explain differences between diseases. The sensors most predictive of environmental labels here, most of which correspond to uncharacterized proteins, are a useful starting point for the discovery of important environment signals and the development of possible diagnostic interventions.


Asunto(s)
Metagenómica , Microbiota , Humanos , Metagenoma , Aprendizaje Automático , Planeta Tierra
2.
Nat Protoc ; 18(1): 208-238, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36376589

RESUMEN

Uncultivated Bacteria and Archaea account for the vast majority of species on Earth, but obtaining their genomes directly from the environment, using shotgun sequencing, has only become possible recently. To realize the hope of capturing Earth's microbial genetic complement and to facilitate the investigation of the functional roles of specific lineages in a given ecosystem, technologies that accelerate the recovery of high-quality genomes are necessary. We present a series of analysis steps and data products for the extraction of high-quality metagenome-assembled genomes (MAGs) from microbiomes using the U.S. Department of Energy Systems Biology Knowledgebase (KBase) platform ( http://www.kbase.us/ ). Overall, these steps take about a day to obtain extracted genomes when starting from smaller environmental shotgun read libraries, or up to about a week from larger libraries. In KBase, the process is end-to-end, allowing a user to go from the initial sequencing reads all the way through to MAGs, which can then be analyzed with other KBase capabilities such as phylogenetic placement, functional assignment, metabolic modeling, pangenome functional profiling, RNA-Seq and others. While portions of such capabilities are available individually from other resources, the combination of the intuitive usability, data interoperability and integration of tools in a freely available computational resource makes KBase a powerful platform for obtaining MAGs from microbiomes. While this workflow offers tools for each of the key steps in the genome extraction process, it also provides a scaffold that can be easily extended with additional MAG recovery and analysis tools, via the KBase software development kit (SDK).


Asunto(s)
Metagenoma , Microbiota , Filogenia , Genoma Bacteriano , Microbiota/genética , Bacterias/genética , Metagenómica
4.
ISME J ; 16(5): 1337-1347, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34969995

RESUMEN

With advances in DNA sequencing and miniaturized molecular biology workflows, rapid and affordable sequencing of single-cell genomes has become a reality. Compared to 16S rRNA gene surveys and shotgun metagenomics, large-scale application of single-cell genomics to whole microbial communities provides an integrated snapshot of community composition and function, directly links mobile elements to their hosts, and enables analysis of population heterogeneity of the dominant community members. To that end, we sequenced nearly 500 single-cell genomes from a low diversity hot spring sediment sample from Dewar Creek, British Columbia, and compared this approach to 16S rRNA gene amplicon and shotgun metagenomics applied to the same sample. We found that the broad taxonomic profiles were similar across the three sequencing approaches, though several lineages were missing from the 16S rRNA gene amplicon dataset, likely the result of primer mismatches. At the functional level, we detected a large array of mobile genetic elements present in the single-cell genomes but absent from the corresponding same species metagenome-assembled genomes. Moreover, we performed a single-cell population genomic analysis of the three most abundant community members, revealing differences in population structure based on mutation and recombination profiles. While the average pairwise nucleotide identities were similar across the dominant species-level lineages, we observed differences in the extent of recombination between these dominant populations. Most intriguingly, the creek's Hydrogenobacter sp. population appeared to be so recombinogenic that it more closely resembled a sexual species than a clonally evolving microbe. Together, this work demonstrates that a randomized single-cell approach can be useful for the exploration of previously uncultivated microbes from community composition to population structure.


Asunto(s)
Manantiales de Aguas Termales , Bacterias/genética , Metagenoma , Metagenómica , ARN Ribosómico 16S/genética
5.
Nat Commun ; 12(1): 4021, 2021 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-34188040

RESUMEN

Chlamydiae are highly successful strictly intracellular bacteria associated with diverse eukaryotic hosts. Here we analyzed metagenome-assembled genomes of the "Genomes from Earth's Microbiomes" initiative from diverse environmental samples, which almost double the known phylogenetic diversity of the phylum and facilitate a highly resolved view at the chlamydial pangenome. Chlamydiae are defined by a relatively large core genome indicative of an intracellular lifestyle, and a highly dynamic accessory genome of environmental lineages. We observe chlamydial lineages that encode enzymes of the reductive tricarboxylic acid cycle and for light-driven ATP synthesis. We show a widespread potential for anaerobic energy generation through pyruvate fermentation or the arginine deiminase pathway, and we add lineages capable of molecular hydrogen production. Genome-informed analysis of environmental distribution revealed lineage-specific niches and a high abundance of chlamydiae in some habitats. Together, our data provide an extended perspective of the variability of chlamydial biology and the ecology of this phylum of intracellular microbes.


Asunto(s)
Chlamydia/genética , Ciclo del Ácido Cítrico/genética , Genoma Bacteriano/genética , Metagenoma/genética , Acanthamoeba/microbiología , Animales , Chlamydia/clasificación , Chlamydia/aislamiento & purificación , Ecosistema , Peces/parasitología , Branquias/parasitología , Hidrolasas/metabolismo , Filogenia , Ácido Pirúvico/metabolismo , Secuenciación Completa del Genoma
6.
Proc Natl Acad Sci U S A ; 118(25)2021 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-34161255

RESUMEN

At marine methane seeps, vast quantities of methane move through the shallow subseafloor, where it is largely consumed by microbial communities. This process plays an important role in global methane dynamics, but we have yet to identify all of the methane sinks in the deep sea. Here, we conducted a continental-scale survey of seven geologically diverse seafloor seeps and found that carbonate rocks from all sites host methane-oxidizing microbial communities with substantial methanotrophic potential. In laboratory-based mesocosm incubations, chimney-like carbonates from the newly described Point Dume seep off the coast of Southern California exhibited the highest rates of anaerobic methane oxidation measured to date. After a thorough analysis of physicochemical, electrical, and biological factors, we attribute this substantial metabolic activity largely to higher cell density, mineral composition, kinetic parameters including an elevated Vmax, and the presence of specific microbial lineages. Our data also suggest that other features, such as electrical conductance, rock particle size, and microbial community alpha diversity, may influence a sample's methanotrophic potential, but these factors did not demonstrate clear patterns with respect to methane oxidation rates. Based on the apparent pervasiveness within seep carbonates of microbial communities capable of performing anaerobic oxidation of methane, as well as the frequent occurrence of carbonates at seeps, we suggest that rock-hosted methanotrophy may be an important contributor to marine methane consumption.


Asunto(s)
Carbonatos/química , Fenómenos Geológicos , Metano/metabolismo , Microbiota , Agua de Mar/microbiología , Geografía , Cinética , Microbiota/genética , Oxidación-Reducción , ARN Ribosómico 16S/genética
8.
Nat Biotechnol ; 39(4): 499-509, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33169036

RESUMEN

The reconstruction of bacterial and archaeal genomes from shotgun metagenomes has enabled insights into the ecology and evolution of environmental and host-associated microbiomes. Here we applied this approach to >10,000 metagenomes collected from diverse habitats covering all of Earth's continents and oceans, including metagenomes from human and animal hosts, engineered environments, and natural and agricultural soils, to capture extant microbial, metabolic and functional potential. This comprehensive catalog includes 52,515 metagenome-assembled genomes representing 12,556 novel candidate species-level operational taxonomic units spanning 135 phyla. The catalog expands the known phylogenetic diversity of bacteria and archaea by 44% and is broadly available for streamlined comparative analyses, interactive exploration, metabolic modeling and bulk download. We demonstrate the utility of this collection for understanding secondary-metabolite biosynthetic potential and for resolving thousands of new host linkages to uncultivated viruses. This resource underscores the value of genome-centric approaches for revealing genomic properties of uncultivated microorganisms that affect ecosystem processes.


Asunto(s)
Archaea/genética , Bacterias/genética , Metabolómica/métodos , Metagenoma , Metagenómica/métodos , Virus/genética , Microbiología del Aire , Animales , Archaea/clasificación , Archaea/aislamiento & purificación , Bacterias/clasificación , Bacterias/aislamiento & purificación , Catálogos como Asunto , Ecosistema , Humanos , Filogenia , Microbiología del Suelo , Virus/aislamiento & purificación , Microbiología del Agua
10.
ISME J ; 14(10): 2527-2541, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32661357

RESUMEN

Our current knowledge of host-virus interactions in biofilms is limited to computational predictions based on laboratory experiments with a small number of cultured bacteria. However, natural biofilms are diverse and chiefly composed of uncultured bacteria and archaea with no viral infection patterns and lifestyle predictions described to date. Herein, we predict the first DNA sequence-based host-virus interactions in a natural biofilm. Using single-cell genomics and metagenomics applied to a hot spring mat of the Cone Pool in Mono County, California, we provide insights into virus-host range, lifestyle and distribution across different mat layers. Thirty-four out of 130 single cells contained at least one viral contig (26%), which, together with the metagenome-assembled genomes, resulted in detection of 59 viruses linked to 34 host species. Analysis of single-cell amplification kinetics revealed a lack of active viral replication on the single-cell level. These findings were further supported by mapping metagenomic reads from different mat layers to the obtained host-virus pairs, which indicated a low copy number of viral genomes compared to their hosts. Lastly, the metagenomic data revealed high layer specificity of viruses, suggesting limited diffusion to other mat layers. Taken together, these observations indicate that in low mobility environments with high microbial abundance, lysogeny is the predominant viral lifestyle, in line with the previously proposed "Piggyback-the-Winner" theory.


Asunto(s)
Manantiales de Aguas Termales , Virus , Archaea/genética , Genoma Viral , Metagenoma , Metagenómica , Filogenia , Virus/genética
11.
FEMS Microbiol Lett ; 367(1)2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-32055819

RESUMEN

Interactions among microorganisms and their mineralogical substrates govern the structure, function and emergent properties of microbial communities. These interactions are predicated on spatial relationships, which dictate metabolite exchange and access to key substrates. To quantitatively assess links between spatial relationships and metabolic activity, this study presents a novel approach to map all organisms, the metabolically active subset and associated mineral grains, all while maintaining spatial integrity of an environmental microbiome. We applied this method at an outgassing fumarole of Vanuatu's Marum Crater, one of the largest point sources of several environmentally relevant gaseous compounds, including H2O, CO2 and SO2. With increasing distance from the sediment-air surface and from mineral grain outer boundaries, organism abundance decreased but the proportion of metabolically active organisms often increased. These protected niches may provide more stable conditions that promote consistent metabolic activity of a streamlined community. Conversely, exterior surfaces accumulate more organisms that may cover a wider range of preferred conditions, implying that only a subset of the community will be active under any particular environmental regime. More broadly, the approach presented here allows investigators to see microbial communities 'as they really are' and explore determinants of metabolic activity across a range of microbiomes.


Asunto(s)
Microbiología Ambiental , Sedimentos Geológicos/microbiología , Metaboloma , Microbiota/fisiología , Análisis de la Célula Individual , Sedimentos Geológicos/química , Minerales/metabolismo , Densidad de Población , Erupciones Volcánicas
12.
ISME J ; 13(6): 1457-1468, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30728468

RESUMEN

The exploration of Earth's terrestrial subsurface biosphere has led to the discovery of several new archaeal lineages of evolutionary significance. Similarly, the deep subseafloor crustal biosphere also harbors many unique, uncultured archaeal taxa, including those belonging to Candidatus Hydrothermarchaeota, formerly known as Marine Benthic Group-E. Recently, Hydrothermarchaeota was identified as an abundant lineage of Juan de Fuca Ridge flank crustal fluids, suggesting its adaptation to this extreme environment. Through the investigation of single-cell and metagenome-assembled genomes, we provide insight into the lineage's evolutionary history and metabolic potential. Phylogenomic analysis reveals the Hydrothermarchaeota to be an early-branching archaeal phylum, branching between the superphylum DPANN, Euryarchaeota, and Asgard lineages. Hydrothermarchaeota genomes suggest a potential for dissimilative and assimilative carbon monoxide oxidation (carboxydotrophy), as well as sulfate and nitrate reduction. There is also a prevalence of chemotaxis and motility genes, indicating adaptive strategies for this nutrient-limited fluid-rock environment. These findings provide the first genomic interpretations of the Hydrothermarchaeota phylum and highlight the anoxic, hot, deep marine crustal biosphere as an important habitat for understanding the evolution of early life.


Asunto(s)
Archaea/aislamiento & purificación , Archaea/metabolismo , Monóxido de Carbono/metabolismo , Archaea/clasificación , Archaea/genética , Ecosistema , Ambientes Extremos , Genómica , Sedimentos Geológicos/microbiología , Metagenoma , Nitratos/metabolismo , Filogenia , Sulfatos/metabolismo
13.
ISME J ; 13(5): 1269-1279, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30651609

RESUMEN

The methyl-coenzyme M reductase (MCR) complex is a key enzyme in archaeal methane generation and has recently been proposed to also be involved in the oxidation of short-chain hydrocarbons including methane, butane, and potentially propane. The number of archaeal clades encoding the MCR continues to grow, suggesting that this complex was inherited from an ancient ancestor, or has undergone extensive horizontal gene transfer. Expanding the representation of MCR-encoding lineages through metagenomic approaches will help resolve the evolutionary history of this complex. Here, a near-complete Archaeoglobi metagenome-assembled genome (MAG; Ca. Polytropus marinifundus gen. nov. sp. nov.) was recovered from the deep subseafloor along the Juan de Fuca Ridge flank that encodes two divergent McrABG operons similar to those found in Ca. Bathyarchaeota and Ca. Syntrophoarchaeum MAGs. Ca. P. marinifundus is basal to members of the class Archaeoglobi, and encodes the genes for ß-oxidation, potentially allowing an alkanotrophic metabolism similar to that proposed for Ca. Syntrophoarchaeum. Ca. P. marinifundus also encodes a respiratory electron transport chain that can potentially utilize nitrate, iron, and sulfur compounds as electron acceptors. Phylogenetic analysis suggests that the Ca. P. marinifundus MCR operons were horizontally transferred, changing our understanding of the evolution and distribution of this complex in the Archaea.


Asunto(s)
Proteínas Arqueales/genética , Euryarchaeota/enzimología , Euryarchaeota/genética , Evolución Molecular , Oxidorreductasas/genética , Proteínas Arqueales/metabolismo , Butanos/metabolismo , Euryarchaeota/clasificación , Euryarchaeota/metabolismo , Metagenoma , Metagenómica , Metano/metabolismo , Oxidación-Reducción , Oxidorreductasas/metabolismo , Filogenia , Agua de Mar/microbiología
14.
Nucleic Acids Res ; 47(D1): D666-D677, 2019 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-30289528

RESUMEN

The Integrated Microbial Genomes & Microbiomes system v.5.0 (IMG/M: https://img.jgi.doe.gov/m/) contains annotated datasets categorized into: archaea, bacteria, eukarya, plasmids, viruses, genome fragments, metagenomes, cell enrichments, single particle sorts, and metatranscriptomes. Source datasets include those generated by the DOE's Joint Genome Institute (JGI), submitted by external scientists, or collected from public sequence data archives such as NCBI. All submissions are typically processed through the IMG annotation pipeline and then loaded into the IMG data warehouse. IMG's web user interface provides a variety of analytical and visualization tools for comparative analysis of isolate genomes and metagenomes in IMG. IMG/M allows open access to all public genomes in the IMG data warehouse, while its expert review (ER) system (IMG/MER: https://img.jgi.doe.gov/mer/) allows registered users to access their private genomes and to store their private datasets in workspace for sharing and for further analysis. IMG/M data content has grown by 60% since the last report published in the 2017 NAR Database Issue. IMG/M v.5.0 has a new and more powerful genome search feature, new statistical tools, and supports metagenome binning.


Asunto(s)
Manejo de Datos/métodos , Bases de Datos Genéticas , Genómica/métodos , Metagenoma , Microbiota , Programas Informáticos , Anotación de Secuencia Molecular/métodos , Alineación de Secuencia/métodos
17.
ISME J ; 12(7): 1715-1728, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29467397

RESUMEN

A critical step in the biogeochemical cycle of sulfur on Earth is microbial sulfate reduction, yet organisms from relatively few lineages have been implicated in this process. Previous studies using functional marker genes have detected abundant, novel dissimilatory sulfite reductases (DsrAB) that could confer the capacity for microbial sulfite/sulfate reduction but were not affiliated with known organisms. Thus, the identity of a significant fraction of sulfate/sulfite-reducing microbes has remained elusive. Here we report the discovery of the capacity for sulfate/sulfite reduction in the genomes of organisms from 13 bacterial and archaeal phyla, thereby more than doubling the number of microbial phyla associated with this process. Eight of the 13 newly identified groups are candidate phyla that lack isolated representatives, a finding only possible given genomes from metagenomes. Organisms from Verrucomicrobia and two candidate phyla, Candidatus Rokubacteria and Candidatus Hydrothermarchaeota, contain some of the earliest evolved dsrAB genes. The capacity for sulfite reduction has been laterally transferred in multiple events within some phyla, and a key gene potentially capable of modulating sulfur metabolism in associated cells has been acquired by putatively symbiotic bacteria. We conclude that current functional predictions based on phylogeny significantly underestimate the extent of sulfate/sulfite reduction across Earth's ecosystems. Understanding the prevalence of this capacity is integral to interpreting the carbon cycle because sulfate reduction is often coupled to turnover of buried organic carbon. Our findings expand the diversity of microbial groups associated with sulfur transformations in the environment and motivate revision of biogeochemical process models based on microbial community composition.


Asunto(s)
Archaea/metabolismo , Bacterias/metabolismo , Biodiversidad , Azufre/metabolismo , Archaea/clasificación , Archaea/genética , Archaea/aislamiento & purificación , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Hidrogenosulfito Reductasa/genética , Hidrogenosulfito Reductasa/metabolismo , Metagenoma , Oxidación-Reducción , Filogenia
18.
Nat Biotechnol ; 35(8): 725-731, 2017 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-28787424

RESUMEN

We present two standards developed by the Genomic Standards Consortium (GSC) for reporting bacterial and archaeal genome sequences. Both are extensions of the Minimum Information about Any (x) Sequence (MIxS). The standards are the Minimum Information about a Single Amplified Genome (MISAG) and the Minimum Information about a Metagenome-Assembled Genome (MIMAG), including, but not limited to, assembly quality, and estimates of genome completeness and contamination. These standards can be used in combination with other GSC checklists, including the Minimum Information about a Genome Sequence (MIGS), Minimum Information about a Metagenomic Sequence (MIMS), and Minimum Information about a Marker Gene Sequence (MIMARKS). Community-wide adoption of MISAG and MIMAG will facilitate more robust comparative genomic analyses of bacterial and archaeal diversity.


Asunto(s)
Genoma Arqueal/genética , Genómica/métodos , Metagenómica/métodos , Genoma Bacteriano/genética , Genómica/normas , Metagenómica/normas , Análisis de Secuencia de ADN
19.
Sci Data ; 4: 170080, 2017 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-28675380

RESUMEN

This corrects the article DOI: 10.1038/sdata.2017.37.

20.
ISME J ; 11(10): 2319-2333, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28644444

RESUMEN

The terrestrial deep subsurface is a huge repository of microbial biomass, but in relation to its size and physical heterogeneity, few sites have been investigated in detail. Here, we applied a culture-independent metagenomic approach to characterize the microbial community composition in deep (1500 meters below surface) terrestrial fluids. Samples were collected from a former gold mine in Lead, South Dakota, USA, now Sanford Underground Research Facility (SURF). We reconstructed 74 genomes from metagenomes (MAGs), enabling the identification of common metabolic pathways. Sulfate and nitrate/nitrite reduction were the most common putative energy metabolisms. Complete pathways for autotrophic carbon fixation were found in more than half of the MAGs, with the reductive acetyl-CoA pathway by far the most common. Nearly 40% (29 of 74) of the recovered MAGs belong to bacterial phyla without any cultivated members-microbial dark matter. Three of our MAGs constitute two novel phyla previously only identified in 16 S rRNA gene surveys. The uniqueness of this data set-its physical depth in the terrestrial subsurface, the relative abundance and completeness of microbial dark matter genomes and the overall diversity of this physically deep, dark, community-make it an invaluable addition to our knowledge of deep subsurface microbial ecology.


Asunto(s)
Bacterias/metabolismo , Carbono/metabolismo , Sedimentos Geológicos/microbiología , Acetilcoenzima A/metabolismo , Procesos Autotróficos , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Ciclo del Carbono , Sedimentos Geológicos/análisis , Redes y Vías Metabólicas , Metagenoma , Metagenómica , Minería , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...