Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
2.
Unfallchirurg ; 124(8): 680-684, 2021 Aug.
Artículo en Alemán | MEDLINE | ID: mdl-34236449

RESUMEN

OBJECTIVE OF SURGERY: High primary stability of the pelvic girdle with full weight bearing. INDICATIONS: Instability and immobility in patients with osteoporotic fractures of the pelvis. CONTRAINDICATIONS: Decubitus ulcers, infections. SURGICAL TECHNIQUE: Minimally invasive posterior locked compression plate 4.5 LCP (locked compression plate, DePuy Synthes, Zuchwil, Switzerland). FOLLOW-UP: Immediate mobilization with full weight bearing, X­ ray control. EVIDENCE: The follow-up examination of a collective of 34 patients showed no implant loosening and a relatively low radiation exposure.


Asunto(s)
Fracturas por Estrés , Fracturas Osteoporóticas , Placas Óseas , Fijación Interna de Fracturas , Humanos , Procedimientos Quirúrgicos Mínimamente Invasivos , Fracturas Osteoporóticas/diagnóstico por imagen , Fracturas Osteoporóticas/cirugía , Pelvis
3.
Eur J Trauma Emerg Surg ; 47(1): 37-45, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33104870

RESUMEN

PURPOSE: Fragility fractures of the pelvis (FFP) are common in older patients. We evaluated the clinical outcome of using a minimally invasive posterior locked compression plate (MIPLCP) as therapeutic alternative. METHODS: 53 Patients with insufficiency fractures of the posterior pelvic ring were treated with MIPLCP when suffering from persistent pain and immobility under conservative treatment. After initial X-ray, CT-scans of the pelvis were performed. In some cases an MRI was also performed to detect occult fractures. Postoperatively patients underwent conventional X-ray controls. Data were retrospectively analyzed for surgical and radiation time, complication rate, clinical outcome and compared to the literature. RESULTS: Patients (average age 79.1 years) underwent surgery with operation time of 52.3 min (SD 13.9), intra-operative X-ray time of 9.42 s (SD 9.6), mean dose length product of 70.1 mGycm (SD 57.9) and a mean hospital stay of 21.2 days (SD 7.7). 13% patients (n = 7) showed surgery-related complications, such as wound infection, prolonged wound secretion, irritation of the sacral root or clinically inapparent screw malpositioning. 17% (n = 9) showed postoperative complications (one patient died due to pneumonia 24 days after surgery, eight patients developed urinal tract infections). 42 patients managed to return to previous living situation. 34 were followed-up after a mean period of 31.5 (6-90) months and pain level at post-hospital examination of 2.4 (VAS) with an IOWA Pelvic Score of 85.6 (55-99). CONCLUSION: We showed that MIPLCP osteosynthesis is a safe surgical alternative in patients with FFP 3 and FFP 4. This treatment is another way of maintaining a high level of stability in the osteoporotic pelvic ring with a relatively low complication rate, low radiation and moderate operation time and a good functional outcome.


Asunto(s)
Placas Óseas , Fijación Interna de Fracturas/métodos , Procedimientos Quirúrgicos Mínimamente Invasivos , Fracturas Osteoporóticas/cirugía , Huesos Pélvicos/lesiones , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Tiempo de Internación/estadística & datos numéricos , Masculino , Tempo Operativo , Fracturas Osteoporóticas/diagnóstico por imagen , Dimensión del Dolor , Huesos Pélvicos/diagnóstico por imagen , Complicaciones Posoperatorias , Estudios Retrospectivos
4.
J Nanobiotechnology ; 17(1): 98, 2019 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-31530277

RESUMEN

The authors apologized for the unfortunate error in figure during publication of the article and they also explained that some of the solid grey graphs in Fig. 5 are intentionally based on the same data. For 8 different surface makers (CD14, CD73, CD34, CD105, CD19, CD90, CD45, HA-DR) in accordance to the guidelines of the manufacturer a panel of 4 different isotype controls were used, corresponding to 4 different fluorescence channels.

8.
Oncotarget ; 8(52): 89580-89594, 2017 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-29163772

RESUMEN

The anti-apoptotic cellular FLICE-like inhibitory protein cFLIP plays a pivotal role in normal tissues homoeostasis and the development of many tumors, but its role in normal thymus (NT), thymomas and thymic carcinomas (TC) is largely unknown. Expression, regulation and function of cFLIP were analyzed in biopsies of NT, thymomas, thymic squamous cell carcinomas (TSCC), thymic epithelial cells (TECs) derived thereof and in the TC line 1889c by qRT-PCR, western blot, shRNA techniques, and functional assays addressing survival, senescence and autophagy. More than 90% of thymomas and TSCCs showed increased cFLIP expression compared to NT. cFLIP expression declined with age in NTs but not in thymomas. During short term culture cFLIP expression levels declined significantly slower in neoplastic than non-neoplastic primary TECs. Down-regulation of cFLIP by shRNA or NF-κB inhibition accelerated senescence and induced autophagy and cell death in neoplastic TECs. The results suggest a role of cFLIP in the involution of normal thymus and the development of thymomas and TSCC. Since increased expression of cFLIP is a known tumor escape mechanism, it may serve as tissue-based biomarker in future clinical trials, including immune checkpoint inhibitor trials in the commonly PD-L1high thymomas and TCs.

9.
J Nanobiotechnology ; 15(1): 24, 2017 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-28356160

RESUMEN

BACKGROUND: Mesenchymal stromal cells (MSCs) have an inherent migratory capacity towards tumor tissue in vivo. With the future objective to quantify the tumor homing efficacy of MSCs, as first step in this direction we investigated the use of inorganic nanoparticles (NPs), in particular ca. 4 nm-sized Au NPs, for MSC labeling. Time dependent uptake efficiencies of NPs at different exposure concentrations and times were determined via inductively coupled plasma mass spectrometry (ICP-MS). RESULTS: The labeling efficiency of the MSCs was determined in terms of the amount of exocytosed NPs versus the amount of initially endocytosed NPs, demonstrating that at high concentrations the internalized Au NPs were exocytosed over time, leading to continuous exhaustion. While exposure to NPs did not significantly impair cell viability or expression of surface markers, even at high dose levels, MSCs were significantly affected in their proliferation and migration potential. These results demonstrate that proliferation or migration assays are more suitable to evaluate whether labeling of MSCs with certain amounts of NPs exerts distress on cells. However, despite optimized conditions the labeling efficiency varied considerably in MSC lots from different donors, indicating cell specific loading capacities for NPs. Finally, we determined the detection limits of Au NP-labeled MSCs within murine tissue employing ICP-MS and demonstrate the distribution and homing of NP labeled MSCs in vivo. CONCLUSION: Although large amounts of NPs improve contrast for imaging, duration and extend of labeling needs to be adjusted carefully to avoid functional deficits in MSCs. We established an optimized labeling strategy for human MSCs with Au NPs that preserves their migratory capacity in vivo.


Asunto(s)
Rastreo Celular , Oro/química , Células Madre Mesenquimatosas/citología , Nanopartículas del Metal/química , Animales , Diferenciación Celular , Movimiento Celular , Supervivencia Celular , Células Cultivadas , Endocitosis , Exocitosis , Humanos , Masculino , Espectrometría de Masas , Ratones , Ratones Endogámicos BALB C , Tamaño de la Partícula
10.
ACS Nano ; 11(3): 2313-2381, 2017 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-28290206

RESUMEN

The design and use of materials in the nanoscale size range for addressing medical and health-related issues continues to receive increasing interest. Research in nanomedicine spans a multitude of areas, including drug delivery, vaccine development, antibacterial, diagnosis and imaging tools, wearable devices, implants, high-throughput screening platforms, etc. using biological, nonbiological, biomimetic, or hybrid materials. Many of these developments are starting to be translated into viable clinical products. Here, we provide an overview of recent developments in nanomedicine and highlight the current challenges and upcoming opportunities for the field and translation to the clinic.


Asunto(s)
Sistemas de Liberación de Medicamentos , Nanomedicina , Nanopartículas/química , Neoplasias/tratamiento farmacológico , Animales , Portadores de Fármacos/química , Humanos , Nanotecnología , Neoplasias/patología , Tamaño de la Partícula
13.
Sci Total Environ ; 568: 819-828, 2016 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-27306826

RESUMEN

The use of nanotechnologies involving nano- and microparticles has increased tremendously in the recent past. There are various beneficial characteristics that make particles attractive for a wide range of technologies. However, colloidal particles on the other hand can potentially be harmful for humans and environment. Today, complete understanding of the interaction of colloidal particles with biological systems still remains a challenge. Indeed, their uptake, effects, and final cell cycle including their life span fate and degradation in biological systems are not fully understood. This is mainly due to the complexity of multiple parameters which need to be taken in consideration to perform the nanosafety research. Therefore, we will provide an overview of the common denominators and ideas to achieve universal metrics to assess their safety. The review discusses aspects including how biological media could change the physicochemical properties of colloids, how colloids are endocytosed by cells, how to distinguish between internalized versus membrane-attached colloids, possible correlation of cellular uptake of colloids with their physicochemical properties, and how the colloidal stability of colloids may vary upon cell internalization. In conclusion three main statements are given. First, in typically exposure scenarios only part of the colloids associated with cells are internalized while a significant part remain outside cells attached to their membrane. For quantitative uptake studies false positive counts in the form of only adherent but not internalized colloids have to be avoided. pH sensitive fluorophores attached to the colloids, which can discriminate between acidic endosomal/lysosomal and neutral extracellular environment around colloids offer a possible solution. Second, the metrics selected for uptake studies is of utmost importance. Counting the internalized colloids by number or by volume may lead to significantly different results. Third, colloids may change their physicochemical properties along their life cycle, and appropriate characterization is required during the different stages.


Asunto(s)
Membrana Celular/metabolismo , Coloides/análisis , Endocitosis/fisiología , Nanopartículas/análisis , Técnicas de Cultivo de Célula , Células Cultivadas , Coloides/química , Coloides/metabolismo , Humanos , Nanopartículas/química , Nanopartículas/metabolismo , Propiedades de Superficie
14.
Curr Stem Cell Res Ther ; 11(8): 666-675, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26423295

RESUMEN

Regenerative medicine is a multidisciplinary field where continued progress relies on the incorporation of a diverse set of technologies from a wide range of disciplines within medicine, science and engineering. This review describes how one such technique, mathematical modelling, can be utilised to improve the tissue engineering of organs and stem cell therapy. Several case studies, taken from research carried out by our group, ACTREM, demonstrate the utility of mechanistic mathematical models to help aid the design and optimisation of protocols in regenerative medicine.


Asunto(s)
Modelos Biológicos , Especificidad de Órganos , Trasplante de Células Madre , Ingeniería de Tejidos/métodos , Animales , Humanos , Medicina Regenerativa , Andamios del Tejido/química
15.
Biomaterials ; 77: 320-35, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26618750

RESUMEN

The currently available surgical options to repair the diaphragm are associated with significant risks of defect recurrence, lack of growth potential and restored functionality. A tissue engineered diaphragm has the potential to improve surgical outcomes for patients with congenital or acquired disorders. Here we show that decellularized diaphragmatic tissue reseeded with bone marrow mesenchymal stromal cells (BM-MSCs) facilitates in situ regeneration of functional tissue. A novel bioreactor, using simultaneous perfusion and agitation, was used to rapidly decellularize rat diaphragms. The scaffolds retained architecture and mechanical properties and supported cell adhesion, proliferation and differentiation. Biocompatibility was further confirmed in vitro and in vivo. We replaced 80% of the left hemidiaphragm with reseeded diaphragmatic scaffolds. After three weeks, transplanted animals gained 32% weight, showed myography, spirometry parameters, and histological evaluations similar to native rats. In conclusion, our study suggested that reseeded decellularized diaphragmatic tissue appears to be a promising option for patients in need of diaphragmatic reconstruction.


Asunto(s)
Diafragma/trasplante , Trasplante de Células Madre Mesenquimatosas/métodos , Ingeniería de Tejidos/métodos , Andamios del Tejido , Implantes Absorbibles , Aloinjertos , Animales , Reactores Biológicos , Adhesión Celular , Diferenciación Celular , Diafragma/irrigación sanguínea , Diafragma/diagnóstico por imagen , Diafragma/inmunología , Electromiografía , Supervivencia de Injerto , Hernias Diafragmáticas Congénitas , Macrófagos/inmunología , Masculino , Neovascularización Fisiológica , Radiografía , Ratas , Ratas Endogámicas Lew , Ingeniería de Tejidos/instrumentación , Trasplante Heterotópico , Trasplantes/irrigación sanguínea , Trasplantes/inmunología , Trasplantes/fisiología , Cicatrización de Heridas
16.
Respiration ; 90(6): 481-92, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26613253

RESUMEN

BACKGROUND: Acute respiratory distress syndrome (ARDS) is a devastating disorder. Despite enormous efforts in clinical research, effective treatment options are lacking, and mortality rates remain unacceptably high. OBJECTIVES: A male patient with severe ARDS showed no clinical improvement with conventional therapies. Hence, an emergent experimental intervention was performed. METHODS: We performed intratracheal administration of autologous peripheral blood-derived mononuclear cells (PBMCs) and erythropoietin (EPO). RESULTS: We found that after 2 days of initial PBMC/EPO application, lung function improved and extracorporeal membrane oxygenation (ECMO) support was reduced. Bronchoscopy and serum inflammatory markers revealed reduced inflammation. Additionally, serum concentration of miR-449a, b, c and miR-34a, a transient upregulation of E-cadherin and associated chromatin marks in PBMCs indicated airway epithelial differentiation. Extracellular vesicles from PBMCs demonstrated anti-inflammatory capacity in a TNF-α-mediated nuclear factor-x03BA;B in vitro assay. Despite improving respiratory function, the patient died of multisystem organ failure on day 38 of ECMO treatment. CONCLUSIONS: This case report provides initial encouraging evidence to use locally instilled PBMC/EPO for treatment of severe refractory ARDS. The observed clinical improvement may partially be due to the anti-inflammatory effects of PBMC/EPO to promote tissue regeneration. Further studies are needed for more in-depth understanding of the underlying mechanisms of in vivo regeneration.


Asunto(s)
Leucocitos Mononucleares/trasplante , Síndrome de Dificultad Respiratoria/terapia , Cadherinas/sangre , Citocinas/sangre , Regulación hacia Abajo , Eritropoyetina/administración & dosificación , Oxigenación por Membrana Extracorpórea , Resultado Fatal , Humanos , Masculino , MicroARNs/sangre , Insuficiencia Multiorgánica/etiología , Factores de Transcripción de la Familia Snail , Factores de Transcripción/sangre , Trasplante Autólogo , Regulación hacia Arriba , Adulto Joven
17.
Stem Cells Dev ; 24(19): 2269-79, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26192403

RESUMEN

While therapeutic mesenchymal stromal/stem cells (MSCs) have usually been obtained from bone marrow, perinatal tissues have emerged as promising new sources of cells for stromal cell therapy. In this study, we present a first safety follow-up on our clinical experience with placenta-derived decidual stromal cells (DSCs), used as supportive immunomodulatory and regenerative therapy for patients with severe complications after allogeneic hematopoietic stem cell transplantation (HSCT). We found that DSCs are smaller, almost half the volume of MSCs, which may favor microvascular passage. DSCs also show different hemocompatibility, with increased triggering of the clotting cascade after exposure to human blood and plasma in vitro. After infusion of DSCs in HSCT patients, we observed a weak activation of the fibrinolytic system, but the other blood activation markers remained stable, excluding major adverse events. Expression profiling identified differential levels of key factors implicated in regulation of hemostasis, such as a lack of prostacyclin synthase and increased tissue factor expression in DSCs, suggesting that these cells have intrinsic blood-activating properties. The stronger triggering of the clotting cascade by DSCs could be antagonized by optimizing the cell graft reconstitution before infusion, for example, by use of low-dose heparin anticoagulant in the cell infusion buffer. We conclude that DSCs are smaller and have stronger hemostatic properties than MSCs, thus triggering stronger activation of the clotting system, which can be antagonized by optimizing the cell graft preparation before infusion. Our results highlight the importance of hemocompatibility safety testing for every novel cell therapy product before clinical use, when applied using systemic delivery.


Asunto(s)
Células de la Médula Ósea/citología , Trasplante de Células Madre Mesenquimatosas/métodos , Células Madre Mesenquimatosas/citología , Adolescente , Adulto , Anticoagulantes/administración & dosificación , Anticoagulantes/farmacología , Coagulación Sanguínea/efectos de los fármacos , Coagulación Sanguínea/fisiología , Células de la Médula Ósea/metabolismo , Células de la Médula Ósea/fisiología , Niño , Preescolar , Sistema Enzimático del Citocromo P-450/genética , Decidua/citología , Decidua/metabolismo , Femenino , Expresión Génica , Enfermedad Injerto contra Huésped/terapia , Heparina/administración & dosificación , Heparina/farmacología , Humanos , Lactante , Recién Nacido , Oxidorreductasas Intramoleculares/genética , Masculino , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/fisiología , Persona de Mediana Edad , Placenta/citología , Placenta/metabolismo , Embarazo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Tromboplastina/genética , Resultado del Tratamiento
18.
J Extracell Vesicles ; 4: 26316, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25899407

RESUMEN

Extracellular vesicles (EVs) have emerged as important mediators of intercellular communication in a diverse range of biological processes. For future therapeutic applications and for EV biology research in general, understanding the in vivo fate of EVs is of utmost importance. Here we studied biodistribution of EVs in mice after systemic delivery. EVs were isolated from 3 different mouse cell sources, including dendritic cells (DCs) derived from bone marrow, and labelled with a near-infrared lipophilic dye. Xenotransplantation of EVs was further carried out for cross-species comparison. The reliability of the labelling technique was confirmed by sucrose gradient fractionation, organ perfusion and further supported by immunohistochemical staining using CD63-EGFP probed vesicles. While vesicles accumulated mainly in liver, spleen, gastrointestinal tract and lungs, differences related to EV cell origin were detected. EVs accumulated in the tumour tissue of tumour-bearing mice and, after introduction of the rabies virus glycoprotein-targeting moiety, they were found more readily in acetylcholine-receptor-rich organs. In addition, the route of administration and the dose of injected EVs influenced the biodistribution pattern. This is the first extensive biodistribution investigation of EVs comparing the impact of several different variables, the results of which have implications for the design and feasibility of therapeutic studies using EVs.

19.
PLoS One ; 9(11): e111591, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25365554

RESUMEN

BACKGROUND: A bioartificial heart is a theoretical alternative to transplantation or mechanical left ventricular support. Native hearts decellularized with preserved architecture and vasculature may provide an acellular tissue platform for organ regeneration. We sought to develop a tissue-engineered whole-heart neoscaffold in human-sized porcine hearts. METHODS: We decellularized porcine hearts (n = 10) by coronary perfusion with ionic detergents in a modified Langendorff circuit. We confirmed decellularization by histology, transmission electron microscopy and fluorescence microscopy, quantified residual DNA by spectrophotometry, and evaluated biomechanical stability with ex-vivo left-ventricular pressure/volume studies, all compared to controls. We then mounted the decellularized porcine hearts in a bioreactor and reseeded them with murine neonatal cardiac cells and human umbilical cord derived endothelial cells (HUVEC) under simulated physiological conditions. RESULTS: Decellularized hearts lacked intracellular components but retained specific collagen fibers, proteoglycan, elastin and mechanical integrity; quantitative DNA analysis demonstrated a significant reduction of DNA compared to controls (82.6±3.2 ng DNA/mg tissue vs. 473.2±13.4 ng DNA/mg tissue, p<0.05). Recellularized porcine whole-heart neoscaffolds demonstrated re-endothelialization of coronary vasculature and measurable intrinsic myocardial electrical activity at 10 days, with perfused organ culture maintained for up to 3 weeks. CONCLUSIONS: Human-sized decellularized porcine hearts provide a promising tissue-engineering platform that may lead to future clinical strategies in the treatment of heart failure.


Asunto(s)
Regeneración Tisular Dirigida/métodos , Corazón Artificial , Ingeniería de Tejidos , Andamios del Tejido , Animales , Femenino , Células Endoteliales de la Vena Umbilical Humana/citología , Humanos , Ratones , Modelos Animales , Miocitos Cardíacos/citología , Porcinos
20.
PLoS One ; 9(9): e107712, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25229469

RESUMEN

Stem cells contribute to regeneration of tissues and organs. Cells with stem cell-like properties have been identified in tumors from a variety of origins, but to our knowledge there are yet no reports on tumor-related stem cells in the human upper respiratory tract. In the present study, we show that a tracheal mucoepidermoid tumor biopsy obtained from a 6 year-old patient contained a subpopulation of cells with morphology, clonogenicity and surface markers that overlapped with bone marrow mesenchymal stromal cells (BM-MSCs). These cells, designated as MEi (mesenchymal stem cell-like mucoepidermoid tumor) cells, could be differentiated towards mesenchymal lineages both with and without induction, and formed spheroids in vitro. The MEi cells shared several multipotent characteristics with BM-MSCs. However, they displayed differences to BM-MSCs in growth kinectics and gene expression profiles relating to cancer pathways and tube development. Despite this, the MEi cells did not possess in vivo tumor-initiating capacity, as proven by the absence of growth in situ after localized injection in immunocompromised mice. Our results provide an initial characterization of benign tracheal cancer-derived niche cells. We believe that this report could be of importance to further understand tracheal cancer initiation and progression as well as therapeutic development.


Asunto(s)
Tumor Mucoepidermoide/patología , Células Madre Neoplásicas/patología , Neoplasias de la Tráquea/patología , Animales , Separación Celular , Niño , Femenino , Perfilación de la Expresión Génica , Genómica , Humanos , Masculino , Células Madre Mesenquimatosas/patología , Ratones , Tumor Mucoepidermoide/diagnóstico , Tumor Mucoepidermoide/genética , Neoplasias de la Tráquea/diagnóstico , Neoplasias de la Tráquea/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...