Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Microbiol ; 9(7): 1725-1737, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38858595

RESUMEN

Pseudomonas aeruginosa, a leading cause of severe hospital-acquired pneumonia, causes infections with up to 50% mortality rates in mechanically ventilated patients. Despite some knowledge of virulence factors involved, it remains unclear how P. aeruginosa disseminates on mucosal surfaces and invades the tissue barrier. Using infection of human respiratory epithelium organoids, here we observed that P. aeruginosa colonization of apical surfaces is promoted by cyclic di-GMP-dependent asymmetric division. Infection with mutant strains revealed that Type 6 Secretion System activities promote preferential invasion of goblet cells. Type 3 Secretion System activity by intracellular bacteria induced goblet cell death and expulsion, leading to epithelial rupture which increased bacterial translocation and dissemination to the basolateral epithelium. These findings show that under physiological conditions, P. aeruginosa uses coordinated activity of a specific combination of virulence factors and behaviours to invade goblet cells and breach the epithelial barrier from within, revealing mechanistic insight into lung infection dynamics.


Asunto(s)
Células Caliciformes , Infecciones por Pseudomonas , Pseudomonas aeruginosa , Mucosa Respiratoria , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/patogenicidad , Pseudomonas aeruginosa/fisiología , Células Caliciformes/microbiología , Células Caliciformes/metabolismo , Humanos , Mucosa Respiratoria/microbiología , Mucosa Respiratoria/citología , Infecciones por Pseudomonas/microbiología , Sistemas de Secreción Tipo VI/genética , Sistemas de Secreción Tipo VI/metabolismo , Factores de Virulencia/metabolismo , Factores de Virulencia/genética , Sistemas de Secreción Tipo III/metabolismo , Sistemas de Secreción Tipo III/genética , GMP Cíclico/análogos & derivados , GMP Cíclico/metabolismo , Organoides/microbiología , Traslocación Bacteriana
2.
Nat Chem Biol ; 19(9): 1063-1071, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37169959

RESUMEN

The Sec61 complex forms a protein-conducting channel in the endoplasmic reticulum membrane that is required for secretion of soluble proteins and production of many membrane proteins. Several natural and synthetic small molecules specifically inhibit Sec61, generating cellular effects that are useful for therapeutic purposes, but their inhibitory mechanisms remain unclear. Here we present near-atomic-resolution structures of human Sec61 inhibited by a comprehensive panel of structurally distinct small molecules-cotransin, decatransin, apratoxin, ipomoeassin, mycolactone, cyclotriazadisulfonamide and eeyarestatin. All inhibitors bind to a common lipid-exposed pocket formed by the partially open lateral gate and plug domain of Sec61. Mutations conferring resistance to the inhibitors are clustered at this binding pocket. The structures indicate that Sec61 inhibitors stabilize the plug domain in a closed state, thereby preventing the protein-translocation pore from opening. Our study provides the atomic details of Sec61-inhibitor interactions and the structural framework for further pharmacological studies and drug design.


Asunto(s)
Retículo Endoplásmico , Proteínas de la Membrana , Humanos , Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/metabolismo , Transporte de Proteínas/fisiología , Canales de Translocación SEC/antagonistas & inhibidores , Canales de Translocación SEC/química , Canales de Translocación SEC/metabolismo
3.
Proc Natl Acad Sci U S A ; 118(33)2021 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-34373330

RESUMEN

The topology of most membrane proteins is defined by the successive integration of α-helical transmembrane domains at the Sec61 translocon. The translocon provides a pore for the transfer of polypeptide segments across the membrane while giving them lateral access to the lipid. For each polypeptide segment of ∼20 residues, the combined hydrophobicities of its constituent amino acids were previously shown to define the extent of membrane integration. Here, we discovered that different sequences preceding a potential transmembrane domain substantially affect its hydrophobicity requirement for integration. Rapidly folding domains, sequences that are intrinsically disordered or very short or capable of binding chaperones with high affinity, allow for efficient transmembrane integration with low-hydrophobicity thresholds for both orientations in the membrane. In contrast, long protein fragments, folding-deficient mutant domains, and artificial sequences not binding chaperones interfered with membrane integration, requiring higher hydrophobicity. We propose that the latter sequences, as they compact on their hydrophobic residues, partially folded but unable to reach a native state, expose hydrophobic surfaces that compete with the translocon for the emerging transmembrane segment, reducing integration efficiency. The results suggest that rapid folding or strong chaperone binding is required for efficient transmembrane integration.


Asunto(s)
Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Citoplasma , Regulación Fúngica de la Expresión Génica , Inmunoprecipitación , Chaperonas Moleculares , Unión Proteica , Dominios Proteicos , Pliegue de Proteína , Proteínas de Saccharomyces cerevisiae/genética
4.
J Mol Biol ; 433(18): 167109, 2021 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-34153287

RESUMEN

Secretory and membrane proteins follow either the signal recognition particle (SRP)-dependent cotranslational translocation pathway or the SRP-independent Sec62/Sec63-dependent posttranslational pathway for their translocation across the endoplasmic reticulum (ER). However, increasing evidence suggests that most proteins are cotranslationally targeted to the ER, suggesting mixed mechanisms. It remains unclear how these two pathways cooperate. Previous studies have shown that Spc3, a signal-anchored protein, requires SRP and Sec62 for its biogenesis. This study investigated the targeting and topogenesis of Spc3 and the step at which SRP and Sec62 act using in vivo and in vitro translocation assays and co-immunoprecipitation. Our data suggest that Spc3 reaches its final topology in two steps: it enters the ER lumen head-first and then inverts its orientation. The first step is partially dependent on SRP, although independent of the Sec62/Sec63 complex. The second step is mediated by the Sec62/Sec63 complex. These data suggest that SRP and Sec62 act on a distinct step in the topogenesis of Spc3.


Asunto(s)
Proteínas de Transporte de Membrana/metabolismo , Procesamiento Proteico-Postraduccional , Señales de Clasificación de Proteína , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Partícula de Reconocimiento de Señal/metabolismo , Proteínas de Transporte de Membrana/genética , Transporte de Proteínas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética , Partícula de Reconocimiento de Señal/genética
5.
Protein J ; 38(3): 306-316, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30927129

RESUMEN

Most membrane proteins are composed of hydrophobic α-helical transmembrane segments and are integrated into the lipid bilayer of the endoplasmic reticulum by the highly conserved Sec61 translocon. With respect to the integration mechanism, three types of transmembrane segments can be distinguished-the signal, the stop-transfer sequence, and the re-integration sequence-which in linear succession can account for all kinds of membrane protein topologies. The transmembrane orientation of the initial signal and to a weaker extent also of downstream transmembrane segments is affected by charged flanking residues according to the so-called positive-inside rule. The main driving force for transmembrane integration is hydrophobicity. Systematic analysis suggested thermodynamic equilibration of each peptide segment in the translocon with the membrane as the underlying mechanism. However, there is evidence that integration is not entirely sequence-autonomous, but depends also on the sequence context, from very closely spaced transmembrane segments to the folding state and properties of neighboring sequences. Topogenesis is even influenced by accessory proteins that appear to act as intramembrane chaperones.


Asunto(s)
Retículo Endoplásmico/metabolismo , Células Eucariotas/metabolismo , Chaperonas Moleculares/química , Proteínas de la Membrana/química , Conformación Proteica en Hélice alfa , Señales de Clasificación de Proteína , Canales de Translocación SEC/química , Canales de Translocación SEC/metabolismo
6.
J Cell Sci ; 130(2): 372-381, 2017 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-27909247

RESUMEN

The Sec61 translocon catalyzes translocation of proteins into the endoplasmic reticulum and the lateral integration of transmembrane segments into the lipid bilayer. Integration is mediated by the hydrophobicity of a polypeptide segment consistent with thermodynamic equilibration between the translocon and the lipid membrane. Integration efficiency of a generic series of increasingly hydrophobic sequences (H-segments) was found to diverge significantly in different reporter constructs as a function of the ∼100 residues that are C-terminal to the H-segments. The hydrophobicity threshold of integration was considerably lowered through insertion of generic ∼20-residue peptides either made of flexible glycine-serine repeats, containing multiple negative charges, or consisting of an oligoproline stretch. A highly flexible, 100-residue glycine-serine stretch maximally enhanced this effect. The apparent free energy of integration was found to be changed by more than 3 kcal/mol with the downstream sequences tested. The C-terminal sequences could also be shown to affect integration of natural mildly hydrophobic sequences. The results suggest that the conformation of the nascent polypeptide in the protected cavity between the ribosome and translocon considerably influences the release of the H-segment into the bilayer.


Asunto(s)
Proteínas de la Membrana/química , Secuencia de Aminoácidos , Codón/genética , Genes Reporteros , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Prolina/química , Dominios Proteicos , Relación Estructura-Actividad
7.
J Cell Sci ; 128(6): 1217-29, 2015 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-25616894

RESUMEN

A new cyclic decadepsipeptide was isolated from Chaetosphaeria tulasneorum with potent bioactivity on mammalian and yeast cells. Chemogenomic profiling in S. cerevisiae indicated that the Sec61 translocon complex, the machinery for protein translocation and membrane insertion at the endoplasmic reticulum, is the target. The profiles were similar to those of cyclic heptadepsipeptides of a distinct chemotype (including HUN-7293 and cotransin) that had previously been shown to inhibit cotranslational translocation at the mammalian Sec61 translocon. Unbiased, genome-wide mutagenesis followed by full-genome sequencing in both fungal and mammalian cells identified dominant mutations in Sec61p (yeast) or Sec61α1 (mammals) that conferred resistance. Most, but not all, of these mutations affected inhibition by both chemotypes, despite an absence of structural similarity. Biochemical analysis confirmed inhibition of protein translocation into the endoplasmic reticulum of both co- and post-translationally translocated substrates by both chemotypes, demonstrating a mechanism independent of a translating ribosome. Most interestingly, both chemotypes were found to also inhibit SecYEG, the bacterial Sec61 translocon homolog. We suggest 'decatransin' as the name for this new decadepsipeptide translocation inhibitor.


Asunto(s)
Productos Biológicos/farmacología , Retículo Endoplásmico/efectos de los fármacos , Proteínas de la Membrana/metabolismo , Transporte de Proteínas/efectos de los fármacos , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Animales , Ascomicetos/metabolismo , Células COS , Células Cultivadas , Chlorocebus aethiops , Células HCT116 , Humanos , Proteínas de la Membrana/antagonistas & inhibidores , Péptidos Cíclicos/farmacología , Polimorfismo de Nucleótido Simple/genética , Canales de Translocación SEC , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo
8.
Proc Natl Acad Sci U S A ; 110(47): 18856-61, 2013 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-24191046

RESUMEN

The Sec61 translocon forms a pore to translocate polypeptide sequences across the membrane and offers a lateral gate for membrane integration of hydrophobic (H) segments. A central constriction of six apolar residues has been shown to form a seal, but also to determine the hydrophobicity threshold for membrane integration: Mutation of these residues in yeast Sec61p to glycines, serines, aspartates, or lysines lowered the hydrophobicity required for integration; mutation to alanines increased it. Whereas four leucines distributed in an oligo-alanine H segment were sufficient for 50% integration, we now find four leucines in the N-terminal half of the H segment to produce significantly more integration than in the C-terminal half, suggesting functional asymmetry within the translocon. Scanning a cluster of three leucines through an oligo-alanine H segment showed high integration levels, except around the position matching that of the hydrophobic constriction in the pore where integration was strongly reduced. Both asymmetry and the position effect of H-segment integration disappeared upon mutation of the constriction residues to glycines or serines, demonstrating that hydrophobicity at this position within the translocon is responsible for the phenomenon. Asymmetry was largely retained, however, when constriction residues were replaced by alanines. These results reflect on the integration mechanism of transmembrane domains and show that membrane insertion of H segments strongly depends not only on their intrinsic hydrophobicity but also on the local conditions in the translocon interior. Thus, the contribution of hydrophobic residues in the H segment is not simply additive and displays cooperativeness depending on their relative position.


Asunto(s)
Aminoácidos/metabolismo , Membrana Celular/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Modelos Moleculares , Conformación Proteica , Transporte de Proteínas/fisiología , Proteínas de Saccharomyces cerevisiae/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Inmunoprecipitación , Proteínas de Transporte de Membrana/genética , Simulación de Dinámica Molecular , Mutación/genética , Transporte de Proteínas/genética , Canales de Translocación SEC , Proteínas de Saccharomyces cerevisiae/genética , Especificidad de la Especie , Termodinámica
9.
Biochim Biophys Acta ; 1833(12): 3104-3111, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24013069

RESUMEN

Membrane protein insertion and topogenesis generally occur at the Sec61 translocon in the endoplasmic reticulum membrane. During this process, membrane spanning segments may adopt two distinct orientations with either their N- or C-terminus translocated into the ER lumen. While different topogenic determinants in membrane proteins, such as flanking charges, polypeptide folding, and hydrophobicity, have been identified, it is not well understood how the translocon and/or associated components decode them. Here we present evidence that the translocon-associated protein (TRAP) complex is involved in membrane protein topogenesis in vivo. Small interfering RNA (siRNA)-mediated silencing of the TRAP complex in HeLa cells enhanced the topology effect of mutating the flanking charges of a signal-anchor, but not of increasing signal hydrophobicity. The results suggest a role of the TRAP complex in moderating the 'positive-inside' rule.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Retículo Endoplásmico/metabolismo , Membranas Intracelulares/metabolismo , Mamíferos/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas de la Membrana/química , Receptores Citoplasmáticos y Nucleares/metabolismo , Receptores de Péptidos/metabolismo , Secuencia de Aminoácidos , Animales , Técnicas de Silenciamiento del Gen , Silenciador del Gen , Células HeLa , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Datos de Secuencia Molecular , Complejos Multiproteicos/metabolismo , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Transporte de Proteínas
10.
J Mol Biol ; 424(5): 368-78, 2012 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-23084973

RESUMEN

Translocation and insertion of secretory and membrane proteins at the endoplasmic reticulum are mediated by the Sec61 translocon. Evidence from in vivo as well as in vitro experiments indicates that N-terminal signal-anchor sequences initially insert N-first before they invert their orientation to translocate the C-terminus. Inversion is driven by flanking charges according to the positive-inside rule and inhibited by increased signal hydrophobicity. Here, we show that upon extending the N-terminal hydrophilic domain preceding the signal core to more than ~20 residues, the insertion behavior changes. Apparent signal inversion and the effect of hydrophobicity are largely lost, suggesting that N-first insertion is limited to N-terminal signal anchors. Extended N-domains sterically hinder N-translocation in a length-dependent manner also for reverse signal anchors with inverted flanking charges. The results indicate a mechanistic difference in the insertion process of N-terminal and internal signal sequences.


Asunto(s)
Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Señales de Clasificación de Proteína , Animales , Células COS , Chlorocebus aethiops , Modelos Biológicos , Transporte de Proteínas , Canales de Translocación SEC
11.
Mol Biol Cell ; 21(10): 1662-70, 2010 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-20357000

RESUMEN

The Sec61 translocon mediates the translocation of proteins across the endoplasmic reticulum membrane and the lateral integration of transmembrane segments into the lipid bilayer. The structure of the idle translocon is closed by a lumenal plug domain and a hydrophobic constriction ring. To test the function of the apolar constriction, we have mutated all six ring residues of yeast Sec61p to more hydrophilic, bulky, or even charged amino acids (alanines, glycines, serines, tryptophans, lysines, or aspartates). The translocon was found to be surprisingly tolerant even to the charge mutations in the constriction ring, because growth and translocation efficiency were not drastically affected. Most interestingly, ring mutants were found to affect the integration of hydrophobic sequences into the lipid bilayer, indicating that the translocon does not simply catalyze the partitioning of potential transmembrane segments between an aqueous environment and the lipid bilayer but that it also plays an active role in setting the hydrophobicity threshold for membrane integration.


Asunto(s)
Retículo Endoplásmico/química , Retículo Endoplásmico/metabolismo , Aminoácidos/análisis , Aminoácidos/genética , Aminoácidos/metabolismo , Animales , Ácido Aspártico/análisis , Ácido Aspártico/genética , Ácido Aspártico/metabolismo , Secuencia de Bases , Estructuras Celulares/metabolismo , Retículo Endoplásmico Rugoso/genética , Retículo Endoplásmico Rugoso/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Membrana Dobles de Lípidos/análisis , Membrana Dobles de Lípidos/metabolismo , Membranas/metabolismo , Mutación , Transporte de Proteínas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Virión/genética , Virión/metabolismo
12.
J Biol Chem ; 282(45): 33201-9, 2007 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-17893139

RESUMEN

The orientation of most single-spanning membrane proteins obeys the "positive-inside rule", i.e. the flanking region of the transmembrane segment that is more positively charged remains in the cytosol. These membrane proteins are integrated by the Sec61/SecY translocon, but how their orientation is achieved is unknown. We have screened for mutations in yeast Sec61p that alter the orientation of single-spanning membrane proteins. We identified a class of mutants that are less efficient in retaining the positively charged flanking region in the cytosol. Surprisingly, these mutations are located at many different sites in the Sec61/SecY molecule, and they do not only involve charged amino acid residues. All these mutants have a prl phenotype that so far have only been seen in bacteria; they allow proteins with defective signal sequences to be translocated, likely because the Sec61p channel opens more easily. A similar correlation between topology defects and prl phenotype was also seen with previously identified yeast Sec61 mutants. Our results suggest a model in which the regulated opening of the translocon is required for the faithful orientation of membrane proteins.


Asunto(s)
Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Señales de Clasificación de Proteína/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de la Membrana/química , Proteínas de Transporte de Membrana , Modelos Biológicos , Modelos Moleculares , Datos de Secuencia Molecular , Mutación/genética , Fenotipo , Estructura Terciaria de Proteína , Transporte de Proteínas , Canales de Translocación SEC , Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/química
13.
Mol Biol Cell ; 17(9): 4063-8, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16822836

RESUMEN

The Sec61/SecY translocon mediates translocation of proteins across the membrane and integration of membrane proteins into the lipid bilayer. The structure of the translocon revealed a plug domain blocking the pore on the lumenal side. It was proposed to be important for gating the protein conducting channel and for maintaining the permeability barrier in its unoccupied state. Here, we analyzed in yeast the effect of introducing destabilizing point mutations in the plug domain or of its partial or complete deletion. Unexpectedly, even when the entire plug domain was deleted, cells were viable without growth phenotype. They showed an effect on signal sequence orientation of diagnostic signal-anchor proteins, a minor defect in cotranslational and a significant deficiency in posttranslational translocation. Steady-state levels of the mutant protein were reduced, and when coexpressed with wild-type Sec61p, the mutant lacking the plug competed poorly for complex partners. The results suggest that the plug is unlikely to be important for sealing the translocation pore in yeast but that it plays a role in stabilizing Sec61p during translocon formation.


Asunto(s)
Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Supervivencia Celular , Proteínas de Transporte de Membrana/metabolismo , Señales de Clasificación de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Transporte de Proteínas , Canales de Translocación SEC , Eliminación de Secuencia
14.
Biochem J ; 385(Pt 1): 173-80, 2005 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-15320873

RESUMEN

The yeast ADP/ATP carrier (AAC) is a mitochondrial protein that is targeted to the inner membrane via the TIM10 and TIM22 translocase complexes. AAC is devoid of a typical mitochondrial targeting signal and its targeting and insertion are thought to be guided by internal amino acid sequences. Here we show that AAC contains a cryptic matrix targeting signal that can target up to two thirds of the N-terminal part of the protein to the matrix. This event is coordinated by the TIM23 translocase and displays all the features of the matrix-targeting pathway. However, in the context of the whole protein, this signal is 'masked' and rendered non-functional as the polypeptide is targeted to the inner membrane via the TIM10 and TIM22 translocases. Our data suggest that after crossing the outer membrane the whole polypeptide chain of AAC is necessary to commit the precursor to the TIM22-mediated inner membrane insertion pathway.


Asunto(s)
Proteínas de Transporte de Membrana/metabolismo , Mitocondrias/metabolismo , Translocasas Mitocondriales de ADP y ATP/química , Translocasas Mitocondriales de ADP y ATP/metabolismo , Señales de Clasificación de Proteína/fisiología , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Chaperonina 60/metabolismo , Citosol/metabolismo , Membranas Intracelulares/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Translocasas Mitocondriales de ADP y ATP/genética , Proteínas de Transporte de Membrana Mitocondrial , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Modelos Biológicos , Chaperonas Moleculares/metabolismo , Señales de Clasificación de Proteína/genética , Transporte de Proteínas , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Especificidad por Sustrato
15.
Biochemistry ; 43(40): 12716-22, 2004 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-15461443

RESUMEN

Most eukaryotic membrane proteins are cotranslationally integrated into the endoplasmic reticulum membrane by the Sec61 translocation complex. They are targeted to the translocon by hydrophobic signal sequences, which induce the translocation of either their N- or their C-terminal sequence. Signal sequence orientation is largely determined by charged residues flanking the apolar sequence (the positive-inside rule), folding properties of the N-terminal segment, and the hydrophobicity of the signal. Recent in vivo experiments suggest that N-terminal signals initially insert into the translocon head-on to yield a translocated N-terminus. Driven by a local electrical potential, the signal may invert its orientation and translocate the C-terminal sequence. Increased hydrophobicity slows down inversion by stabilizing the initial bound state. In vitro cross-linking studies indicate that signals rapidly contact lipids upon entering the translocon. Together with the recent crystal structure of the homologous SecYEbeta translocation complex of Methanococcus jannaschii, which did not reveal an obvious hydrophobic binding site for signals within the pore, a model emerges in which the translocon allows the lateral partitioning of hydrophobic segments between the aqueous pore and the lipid membrane. Signals may return into the pore for reorientation until translation is terminated. Subsequent transmembrane segments in multispanning proteins behave similarly and contribute to the overall topology of the protein.


Asunto(s)
Retículo Endoplásmico/química , Retículo Endoplásmico/metabolismo , Membranas Intracelulares/química , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Animales , Membranas Intracelulares/metabolismo , Procesamiento Proteico-Postraduccional , Señales de Clasificación de Proteína
16.
Mol Biol Cell ; 15(3): 1470-8, 2004 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-14668483

RESUMEN

Protein targeting to the endoplasmic reticulum is mediated by signal or signal-anchor sequences. They also play an important role in protein topogenesis, because their orientation in the translocon determines whether their N- or C-terminal sequence is translocated. Signal orientation is primarily determined by charged residues flanking the hydrophobic core, whereby the more positive end is predominantly positioned to the cytoplasmic side of the membrane, a phenomenon known as the "positive-inside rule." We tested the role of conserved charged residues of Sec61p, the major component of the translocon in Saccharomyces cerevisiae, in orienting signals according to their flanking charges by site-directed mutagenesis by using diagnostic model proteins. Mutation of R67, R74, or E382 in Sec61p reduced C-terminal translocation of a signal-anchor protein with a positive N-terminal flanking sequence and increased it for signal-anchor proteins with positive C-terminal sequences. These mutations produced a stronger effect on substrates with greater charge difference across the hydrophobic core of the signal. For some of the substrates, a charge mutation in Sec61p had a similar effect as one in the substrate polypeptides. Although these three residues do not account for the entire charge effect in signal orientation, the results show that Sec61p contributes to the positive-inside rule.


Asunto(s)
Retículo Endoplásmico/metabolismo , Membranas Intracelulares/metabolismo , Proteínas de la Membrana/metabolismo , Señales de Clasificación de Proteína/fisiología , Secuencia de Aminoácidos , Proteínas de Transporte de Membrana , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Pliegue de Proteína , Procesamiento Proteico-Postraduccional/fisiología , Transporte de Proteínas/fisiología , Canales de Translocación SEC , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...