RESUMEN
INTRODUCTION: Individuals with type 1 diabetes (T1D) experience a complex set of alterations to skeletal muscle metabolic, neuromuscular, and vascular health; collectively referred to as diabetic myopathy. While the full scope of diabetic myopathy is still being elucidated, evidence suggests that even when individuals with T1D are physically active, indices of myopathy still exist. As such, there is a question if adherence to current physical activity guidelines elicits improvements in skeletal muscle health indices similarly between individuals with and without T1D. The objectives of this trial are to: 1) compare baseline differences in skeletal muscle health between adults with and without T1D, 2) examine the association between participation in a home-based exercise program, detraining, and retraining, with changes in skeletal muscle health, and 3) examine the roles of age and sex on these associations. METHODS AND ANALYSIS: This will be a prospective interventional trial. Younger (18-30 years) and older (45-65 years) males and females with T1D and matched individuals without T1D will engage in a four-phase, 18-week study sequentially consisting of a one-week lead-in period, 12-week exercise training program, one-week detraining period, and four-week retraining period. The exercise program will consist of aerobic and resistance exercise based on current guidelines set by Diabetes Canada. Metabolic, neuromuscular, and vascular outcome measures will be assessed four times: at baseline, post-exercise program, post-detraining, and post-retraining. Differences in baseline metrics between those with and without T1D will be examined with independent sample t-tests, and with two-way analyses of variance for age- and sex-stratified analyses. Changes across the duration of the study will be examined using mixed-model analyses. DISSEMINATION: Findings from this research will be shared locally and internationally with research participants, clinicians, diabetes educators, and patient advocacy organizations via in-person presentations, social media, and scientific fora. TRIAL REGISTRATION NUMBER: NCT05740514.
Asunto(s)
Diabetes Mellitus Tipo 1 , Ejercicio Físico , Músculo Esquelético , Humanos , Diabetes Mellitus Tipo 1/terapia , Diabetes Mellitus Tipo 1/fisiopatología , Masculino , Femenino , Músculo Esquelético/fisiopatología , Adulto , Persona de Mediana Edad , Estudios Prospectivos , Adolescente , Anciano , Ejercicio Físico/fisiología , Adulto Joven , Terapia por Ejercicio/métodosRESUMEN
Sarcolipin (SLN) is a small regulatory protein that inhibits the sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) pump. When bound to SERCA, SLN reduces the apparent Ca2+ affinity of SERCA and uncouples SERCA Ca2+ transport from its ATP consumption. As such, SLN plays a direct role in altering skeletal muscle relaxation and energy expenditure. Interestingly, the expression of SLN is dynamic during times of muscle adaptation, in that large increases in SLN content are found in response to development, atrophy, overload, and disease. Several groups have suggested that increases in SLN, especially in dystrophic muscle, are deleterious as it may reduce muscle function and exacerbate already abhorrent intracellular Ca2+ levels. However, there is also significant evidence to show that increased SLN content is a beneficial adaptive mechanism that protects the SERCA pump and activates Ca2+ signaling and adaptive remodeling during times of cell stress. In this review, we first discuss the role for SLN in healthy muscle during both development and overload, where SLN has been shown to activate Ca2+ signaling to promote mitochondrial biogenesis, fiber-type shifts, and muscle hypertrophy. Then, with respect to muscle disease, we summarize the discrepancies in the literature as to whether SLN upregulation is adaptive or maladaptive in nature. This review is the first to offer the concept of SLN hormesis in muscle disease, wherein both too much and too little SLN are detrimental to muscle health. Finally, the underlying mechanisms which activate SLN upregulation are discussed, specifically acknowledging a potential positive feedback loop between SLN and Ca2+ signaling molecules.
Asunto(s)
Desarrollo de Músculos , Proteínas Musculares/metabolismo , Músculo Esquelético/enzimología , Atrofia Muscular/enzimología , Distrofias Musculares/enzimología , Proteolípidos/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Animales , Señalización del Calcio , Humanos , Mitocondrias Musculares/metabolismo , Mitocondrias Musculares/patología , Músculo Esquelético/patología , Músculo Esquelético/fisiopatología , Atrofia Muscular/patología , Atrofia Muscular/fisiopatología , Distrofias Musculares/patología , Distrofias Musculares/fisiopatologíaRESUMEN
Dietary nitrate has been shown to increase cytosolic calcium concentrations within the heart, which would necessitate greater calcium sequestration for relaxation. In the present study we demonstrate that while nitrate supplementation reduced blood pressure, calcium-handling protein content, sarco(endo)plasmic reticulum Ca-ATPase 2a (SERCA) enzymatic properties, and left ventricular function were not altered. In addition, nitrite did not alter in vitro SERCA activity. Combined, these data suggest that in healthy rats, dietary nitrate does not increase left ventricle SERCA-related calcium-handling properties. Novelty Dietary nitrate decreases blood pressure but does not alter left ventricular calcium-handling protein content or SERCA activity in healthy rats.
Asunto(s)
Nitratos/administración & dosificación , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/fisiología , Función Ventricular , Animales , Presión Sanguínea , Calcio , Dieta , Ventrículos Cardíacos , Masculino , Ratas , Ratas Sprague-DawleyRESUMEN
Duchenne muscular dystrophy (DMD) is the most severe form of muscular dystrophy affecting 1 in 3500 live male births. Although there is no cure for DMD, therapeutic strategies aimed at enhancing calcineurin signalling and promoting the slow fibre phenotype have shown promise in mdx mice, which is the classical mouse model for DMD. Sarcolipin (SLN) is a small protein that regulates the sarco(endo)plasmic reticulum Ca2+-ATPase pump and its expression is highly upregulated in dystrophic skeletal muscle. We have recently shown that SLN in skeletal muscle amplifies calcineurin signalling thereby increasing myofibre size and the slow fibre phenotype. Therefore, in the present study we sought to determine the physiological impact of genetic Sln deletion in mdx mice, particularly on calcineurin signalling, fibre-type distribution and size and dystrophic pathology. We generated an mdx/Sln-null (mdx/SlnKO) mouse colony and hypothesized that the soleus and diaphragm muscles from these mice would display blunted calcineurin signalling, smaller myofibre sizes, an increased proportion of fast fibres and worsened dystrophic pathology compared with mdx mice. Our results show that calcineurin signalling was impaired in mdx/SlnKO mice as indicated by reductions in utrophin, stabilin-2 and calcineurin expression. In addition, mdx/SlnKO muscles contained smaller myofibres, exhibited a slow-to-fast fibre-type switch that corresponded with reduced expression of mitochondrial proteins and displayed a worsened dystrophic pathology compared with mdx muscles. Altogether, our findings demonstrate a critical role for SLN upregulation in dystrophic muscles and suggest that SLN can be viewed as a potential therapeutic target.