Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Redox Biol ; 70: 103077, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38359749

RESUMEN

Inflammatory diseases present a serious health challenge due to their widespread prevalence and the severe impact on patients' lives. In the quest to alleviate the burden of these diseases, nuclear factor erythroid 2-related factor 2 (Nrf2) has emerged as a pivotal player. As a transcription factor intimately involved in cellular defense against metabolic and oxidative stress, Nrf2's role in modulating the inflammatory responses of immune cells has garnered significant attention. Recent findings suggest that Nrf2's ability to alter the redox status of cells underlies its regulatory effects on immune responses. Our review delves into preclinical and clinical evidence that underscores the complex influence of Nrf2 activators on immune cell phenotypes, particularly in the inflammatory milieu. By offering a detailed analysis of Nrf2's role in different immune cell populations, we cast light on the potential of Nrf2 activators in shaping the immune response towards a more regulated state, mitigating the adverse effects of inflammation through modeling redox status of immune cells. Furthermore, we explore the innovative use of nanoencapsulation techniques that enhance the delivery and efficacy of Nrf2 activators, potentially advancing the treatment strategies for inflammatory ailments. We hope this review will stimulate the development and expansion of Nrf2-targeted treatments that could substantially improve outcomes for patients suffering from a broad range of inflammatory diseases.


Asunto(s)
Factor 2 Relacionado con NF-E2 , Estrés Oxidativo , Humanos , Factor 2 Relacionado con NF-E2/metabolismo , Oxidación-Reducción , Antioxidantes/metabolismo , Inmunidad
2.
Antioxidants (Basel) ; 12(9)2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37759963

RESUMEN

A family of seven NADPH oxidase enzymes (Nox1-5, Duox1-2) has been implicated in a variety of diseases, including inflammatory lung diseases, neurodegenerative diseases, cardiovascular diseases, and cancer. Here, we report the results of our studies aimed at developing novel brain-permeable Nox2 inhibitors with potential application as neuroprotective agents. Using cell-based assays, we identified a novel Nox2 inhibitor, TG15-132, that prevents PMA-stimulated oxygen consumption and reactive oxygen species (superoxide radical anion and hydrogen peroxide) formation upon acute treatment in differentiated HL60 cells. Long-term treatment with TG15-132 attenuates the induction of genes encoding Nox2 subunits, several inflammatory cytokines, and iNOS in differentiated THP-1 cells. Moreover, TG15-132 shows a relatively long plasma half-life (5.6 h) and excellent brain permeability, with a brain-to-plasma ratio (>5-fold) in rodent models. Additionally, TG15-132 does not cause any toxic effects on vital organs or blood biomarkers of toxicity in mice upon chronic dosing for seven days. We propose that TG15-132 may be used as a Nox2 inhibitor and a potential neuroprotective agent, with possible further structural modifications to increase its potency.

3.
Sci Adv ; 9(21): eade7280, 2023 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-37235659

RESUMEN

Mechanisms underlying arteriovenous malformations (AVMs) are poorly understood. Using mice with endothelial cell (EC) expression of constitutively active Notch4 (Notch4*EC), we show decreased arteriolar tone in vivo during brain AVM initiation. Reduced vascular tone is a primary effect of Notch4*EC, as isolated pial arteries from asymptomatic mice exhibited reduced pressure-induced arterial tone ex vivo. The nitric oxide (NO) synthase (NOS) inhibitor NG-nitro-l-arginine (L-NNA) corrected vascular tone defects in both assays. L-NNA treatment or endothelial NOS (eNOS) gene deletion, either globally or specifically in ECs, attenuated AVM initiation, assessed by decreased AVM diameter and delayed time to moribund. Administering nitroxide antioxidant 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl also attenuated AVM initiation. Increased NOS-dependent production of hydrogen peroxide, but not NO, superoxide, or peroxynitrite was detected in isolated Notch4*EC brain vessels during AVM initiation. Our data suggest that eNOS is involved in Notch4*EC-mediated AVM formation by up-regulating hydrogen peroxide and reducing vascular tone, thereby permitting AVM initiation and progression.


Asunto(s)
Malformaciones Arteriovenosas , Peróxido de Hidrógeno , Óxido Nítrico Sintasa de Tipo III , Animales , Ratones , Arterias/metabolismo , Peróxido de Hidrógeno/metabolismo , Óxido Nítrico Sintasa/genética , Óxido Nítrico Sintasa/metabolismo , Nitroarginina/farmacología
4.
Antioxidants (Basel) ; 12(4)2023 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-37107272

RESUMEN

Metabolic imbalances and persistent hyperglycemia are widely recognized as driving forces for augmented cytosolic and mitochondrial reactive oxygen species (ROS) in diabetes mellitus (DM), fostering the development of vascular complications such as diabetic nephropathy, diabetic cardiomyopathy, diabetic neuropathy, and diabetic retinopathy. Therefore, specific therapeutic approaches capable of modulating oxidative milieu may provide a preventative and/or therapeutic benefit against the development of cardiovascular complications in diabetes patients. Recent studies have demonstrated epigenetic alterations in circulating and tissue-specific long non-coding RNA (lncRNA) signatures in vascular complications of DM regulating mitochondrial function under oxidative stress. Intriguingly, over the past decade mitochondria-targeted antioxidants (MTAs) have emerged as a promising therapeutic option for managing oxidative stress-induced diseases. Here, we review the present status of lncRNA as a diagnostic biomarker and potential regulator of oxidative stress in vascular complications of DM. We also discuss the recent advances in using MTAs in different animal models and clinical trials. We summarize the prospects and challenges for the use of MTAs in treating vascular diseases and their application in translation medicine, which may be beneficial in MTA drug design development, and their application in translational medicine.

5.
Life (Basel) ; 12(10)2022 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-36294921

RESUMEN

Background: The aim of this study was to determine the expression of epithelial to mesenchymal transition (EMT)-related transcription factors Snail, Wnt4, and Notch2 with key roles in renal fibrosis, in different renal areas of diabetic rats: glomeruli (G), proximal and distal convoluted tubules (PCT; DCT). Methods: Male Sprague Dawley rats were instilled with 55 mg/kg streptozotocin (diabetes mellitus type I model, DM group) or citrate buffer (control group). Kidney samples were collected 2 weeks and 2 months after DM induction and processed for immunohistochemistry. Results: Diabetic animals showed higher Wnt4 kidney expression both 2 weeks and 2 months post-DM induction, while Snail expression significantly increased only 2 weeks after DM initiation (p < 0.0001). We determined significantly higher expression of examined EMT-related genes in different kidney regions in diabetic animals compared with controls. The most substantial differences were observed in tubular epithelial cells in the period of 2 weeks after induction, with higher Snail and Wnt4 expression in PCT and increased Snail and Notch2 expression in DCT of diabetic animals (p < 0.0001; p < 0.001). Conclusion: The obtained results point to the EMT-related factors Snail, Wnt4, and Notch2 as a potential contributor to diabetic nephropathy development and progression. Changes in their expression, especially in PCT and DCT, could serve as diagnostic biomarkers for the early stages of DM and might be a promising novel therapeutic target in this condition.

6.
Front Cardiovasc Med ; 8: 737512, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34660740

RESUMEN

Advances in the field of regenerative medicine and tissue engineering over the past few decades have paved the path for cell-free therapy. Numerous stem cell types, including mesenchymal stem cells (MSCs), have been reported to impart therapeutic effects via paracrine secretion of exosomes. The underlying factors and the associated mechanisms contributing to these MSC-derived exosomes' protective effects are, however, poorly understood, limiting their application in the clinic. The exosomes exhibit a diversified repertoire of functional non-coding RNAs (ncRNAs) and have the potential to transfer these biologically active transcripts to the recipient cells, where they are found to modulate a diverse array of functions. Altered expression of the ncRNAs in the exosomes has been linked with the regenerative potential and development of various diseases, including cardiac, neurological, skeletal, and cancer. Also, modulating the expression of ncRNAs in these exosomes has been found to improve their therapeutic impact. Moreover, many of these ncRNAs are expressed explicitly in the MSC-derived exosomes, making them ideal candidates for regenerative medicine, including tissue engineering research. In this review, we detail the recent advances in regenerative medicine and summarize the evidence supporting the altered expression of the ncRNA repertoire specific to MSCs under different degenerative diseases. We also discuss the therapeutic role of these ncRNA for the prevention of these various degenerative diseases and their future in translational medicine.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA