Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Neurochem ; 157(6): 2128-2144, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33583024

RESUMEN

Neuronal network dysfunction is a hallmark of Alzheimer's disease (AD). However, the underlying pathomechanisms remain unknown. We analyzed the hippocampal micronetwork in transgenic McGill-R-Thy1-APP rats (APPtg) at the beginning of extracellular amyloid beta (Aß) deposition. We established two-photon Ca2+ -imaging in vivo in the hippocampus of rats and found hyperactivity of CA1 neurons. Patch-clamp recordings in brain slices in vitro revealed increased neuronal input resistance and prolonged action potential width in CA1 pyramidal neurons. We did neither observe changes in synaptic inhibition, nor in excitation. Our data support the view that increased intrinsic excitability of CA1 neurons may precede inhibitory dysfunction at an early stage of Aß-deposition and disease progression.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Modelos Animales de Enfermedad , Potenciales Postsinápticos Excitadores/fisiología , Hipocampo/metabolismo , Enfermedad de Alzheimer/patología , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Femenino , Hipocampo/patología , Masculino , Técnicas de Cultivo de Órganos , Ratas , Ratas Transgénicas
2.
Neurobiol Learn Mem ; 154: 141-157, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29906573

RESUMEN

Voltage-gated ion channels are critical for neuronal integration. Some of these channels, however, are misregulated in several neurological disorders, causing both gain- and loss-of-function channelopathies in neurons. Using several transgenic mouse models of Alzheimer's disease (AD), we find that sub-threshold voltage signals strongly influenced by hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels progressively deteriorate over chronological aging in hippocampal CA1 pyramidal neurons. The degraded signaling via HCN channels in the transgenic mice is accompanied by an age-related global loss of their non-uniform dendritic expression. Both the aberrant signaling via HCN channels and their mislocalization could be restored using a variety of pharmacological agents that target the endoplasmic reticulum (ER). Our rescue of the HCN channelopathy helps provide molecular details into the favorable outcomes of ER-targeting drugs on the pathogenesis and synaptic/cognitive deficits in AD mouse models, and implies that they might have beneficial effects on neurological disorders linked to HCN channelopathies.


Asunto(s)
Enfermedad de Alzheimer/fisiopatología , Región CA1 Hipocampal/fisiología , Canalopatías/fisiopatología , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/fisiología , Plasticidad Neuronal , Células Piramidales/fisiología , Potenciales de Acción , Envejecimiento , Animales , Región CA1 Hipocampal/ultraestructura , Modelos Animales de Enfermedad , Retículo Endoplásmico/fisiología , Femenino , Masculino , Ratones Transgénicos , Células Piramidales/ultraestructura
3.
Nat Neurosci ; 20(1): 16-19, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27893726

RESUMEN

The medial septum and diagonal band of Broca (MSDB) send glutamatergic axons to medial entorhinal cortex (MEC). We found that this pathway provides speed-correlated input to several MEC cell-types in layer 2/3. The speed signal is integrated most effectively by pyramidal cells but also excites stellate cells and interneurons. Thus, the MSDB conveys speed information that can be used by MEC neurons for spatial representation of self-location.


Asunto(s)
Corteza Entorrinal/fisiología , Hipocampo/fisiología , Locomoción/fisiología , Neuronas/fisiología , Transmisión Sináptica/fisiología , Ácido gamma-Aminobutírico/metabolismo , Animales , Axones/fisiología , Interneuronas/metabolismo , Ratones Endogámicos C57BL , Ratones Transgénicos , Red Nerviosa/fisiología , Células Piramidales/metabolismo
4.
Neuron ; 86(5): 1253-64, 2015 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-25982367

RESUMEN

Before the onset of locomotion, the hippocampus undergoes a transition into an activity-state specialized for the processing of spatially related input. This brain-state transition is associated with increased firing rates of CA1 pyramidal neurons and the occurrence of theta oscillations, which both correlate with locomotion velocity. However, the neural circuit by which locomotor activity is linked to hippocampal oscillations and neuronal firing rates is unresolved. Here we reveal a septo-hippocampal circuit mediated by glutamatergic (VGluT2(+)) neurons that is activated before locomotion onset and that controls the initiation and velocity of locomotion as well as the entrainment of theta oscillations. Moreover, via septo-hippocampal projections onto alveus/oriens interneurons, this circuit regulates feedforward inhibition of Schaffer collateral and perforant path input to CA1 pyramidal neurons in a locomotion-dependent manner. With higher locomotion speed, the increased activity of medial septal VGluT2 neurons is translated into increased axo-somatic depolarization and higher firing rates of CA1 pyramidal neurons. VIDEO ABSTRACT.


Asunto(s)
Hipocampo/fisiología , Locomoción/fisiología , Red Nerviosa/fisiología , Neuronas/fisiología , Tabique del Cerebro/fisiología , Ritmo Teta/fisiología , Animales , Femenino , Masculino , Ratones , Ratones Transgénicos
5.
Neuron ; 84(5): 1023-33, 2014 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-25456500

RESUMEN

Dendritic structure critically determines the electrical properties of neurons and, thereby, defines the fundamental process of input-to-output conversion. The diversity of dendritic architectures enables neurons to fulfill their specialized circuit functions during cognitive processes. It is known that this dendritic integrity is impaired in patients with Alzheimer's disease and in relevant mouse models. It is unknown, however, whether this structural degeneration translates into aberrant neuronal function. Here we use in vivo whole-cell patch-clamp recordings, high-resolution STED imaging, and computational modeling of CA1 pyramidal neurons in a mouse model of Alzheimer's disease to show that structural degeneration and neuronal hyperexcitability are crucially linked. Our results demonstrate that a structure-dependent amplification of synaptic input to action potential output conversion might constitute a novel cellular pathomechanism underlying network dysfunction with potential relevance for other neurodegenerative diseases with abnormal changes of dendritic morphology.


Asunto(s)
Enfermedad de Alzheimer/complicaciones , Dendritas/patología , Hipocampo/patología , Degeneración Nerviosa/etiología , Degeneración Nerviosa/patología , Neuronas/patología , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/genética , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Precursor de Proteína beta-Amiloide/genética , Animales , Simulación por Computador , Modelos Animales de Enfermedad , Estimulación Eléctrica , Femenino , Humanos , Técnicas In Vitro , Lisina/análogos & derivados , Lisina/metabolismo , Masculino , Ratones , Ratones Transgénicos , Modelos Neurológicos , Mutación/genética , Presenilina-1/genética , Presenilina-1/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...