Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Ambio ; 53(7): 970-983, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38696060

RESUMEN

The EU Nature Restoration Law (NRL) is critical for the restoration of degraded ecosystems and active afforestation of degraded peatlands has been suggested as a restoration measure under the NRL. Here, we discuss the current state of scientific evidence on the climate mitigation effects of peatlands under forestry. Afforestation of drained peatlands without restoring their hydrology does not fully restore ecosystem functions. Evidence on long-term climate benefits is lacking and it is unclear whether CO2 sequestration of forest on drained peatland can offset the carbon loss from the peat over the long-term. While afforestation may offer short-term gains in certain cases, it compromises the sustainability of peatland carbon storage. Thus, active afforestation of drained peatlands is not a viable option for climate mitigation under the EU Nature Restoration Law and might even impede future rewetting/restoration efforts. Instead, restoring hydrological conditions through rewetting is crucial for effective peatland restoration.


Asunto(s)
Conservación de los Recursos Naturales , Unión Europea , Agricultura Forestal , Suelo , Conservación de los Recursos Naturales/legislación & jurisprudencia , Conservación de los Recursos Naturales/métodos , Agricultura Forestal/legislación & jurisprudencia , Agricultura Forestal/métodos , Suelo/química , Bosques , Secuestro de Carbono , Restauración y Remediación Ambiental/métodos , Cambio Climático , Ecosistema , Humedales
2.
Sci Total Environ ; 933: 173049, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38735321

RESUMEN

Arctic and subarctic ecosystems are experiencing rapid changes in vegetation composition and productivity due to global warming. Tundra wetlands are especially susceptible to these changes, which may trigger shifts in soil moisture dynamics. It is therefore essential to accurately map plant biomass and topsoil moisture. In this study, we mapped total, wood, and leaf above ground biomass and topsoil moisture in subarctic tundra wetlands located between Norway and Finland by linking models derived from Unoccupied Aerial Vehicles with multiple satellite data sources using the Extreme Gradient Boosting algorithm. The most accurate predictions for topsoil moisture (R2 = 0.73) used a set of red edge-based vegetation indices with a spatial resolution of 20 m per pixel. On the contrary, wood biomass showed the lowest accuracies across all tested models (R2 = 0.38). We found a trade-off between the spatial resolution and the performance of upscaling models, where smaller pixel sizes generally led to lower accuracies. However, we were able to compensate for reduced accuracy at smaller pixel sizes using Copernicus phenology metrics. A modelling uncertainty assessment revealed that the uncertainty of predictions increased with decreasing pixel sizes and increasing number of co-predictors. Our approach could improve efforts to map and monitor changes in vegetation at regional to pan-Arctic scales.


Asunto(s)
Biomasa , Monitoreo del Ambiente , Suelo , Monitoreo del Ambiente/métodos , Suelo/química , Finlandia , Noruega , Humedales , Tundra , Regiones Árticas , Tecnología de Sensores Remotos
3.
Sci Data ; 11(1): 305, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38509110

RESUMEN

Plant biomass is a fundamental ecosystem attribute that is sensitive to rapid climatic changes occurring in the Arctic. Nevertheless, measuring plant biomass in the Arctic is logistically challenging and resource intensive. Lack of accessible field data hinders efforts to understand the amount, composition, distribution, and changes in plant biomass in these northern ecosystems. Here, we present The Arctic plant aboveground biomass synthesis dataset, which includes field measurements of lichen, bryophyte, herb, shrub, and/or tree aboveground biomass (g m-2) on 2,327 sample plots from 636 field sites in seven countries. We created the synthesis dataset by assembling and harmonizing 32 individual datasets. Aboveground biomass was primarily quantified by harvesting sample plots during mid- to late-summer, though tree and often tall shrub biomass were quantified using surveys and allometric models. Each biomass measurement is associated with metadata including sample date, location, method, data source, and other information. This unique dataset can be leveraged to monitor, map, and model plant biomass across the rapidly warming Arctic.


Asunto(s)
Ecosistema , Plantas , Árboles , Regiones Árticas , Biomasa
4.
New Phytol ; 238(1): 80-95, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36300568

RESUMEN

Ericaceous shrubs adapt to the nutrient-poor conditions in ombrotrophic peatlands by forming symbiotic associations with ericoid mycorrhizal (ERM) fungi. Increased nutrient availability may diminish the role of ERM pathways in shrub nutrient uptake, consequently altering the biogeochemical cycling within bogs. To explore the significance of ERM fungi in ombrotrophic peatlands, we developed the model MWMmic (a peat cohort-based biogeochemical model) into MWMmic-NP by explicitly incorporating plant-soil nitrogen (N) and phosphorus (P) cycling and ERM fungi processes. The new model was applied to simulate the biogeochemical cycles in the Mer Bleue (MB) bog in Ontario, Canada, and their responses to fertilization. MWMmic_NP reproduced the carbon(C)-N-P cycles and vegetation dynamics observed in the MB bog, and their responses to fertilization. Our simulations showed that fertilization increased shrub biomass by reducing the C allocation to ERM fungi, subsequently suppressing the growth of underlying Sphagnum mosses, and decreasing the peatland C sequestration. Our species removal simulation further demonstrated that ERM fungi were key to maintaining the shrub-moss coexistence and C sink function of bogs. Our results suggest that ERM fungi play a significant role in the biogeochemical cycles in ombrotrophic peatlands and should be considered in future modeling efforts.


Asunto(s)
Micorrizas , Humedales , Hongos , Plantas/metabolismo , Biomasa , Fertilización , Suelo
5.
PLoS One ; 17(11): e0275149, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36417456

RESUMEN

Peatlands account for 15 to 30% of the world's soil carbon (C) stock and are important controls over global nitrogen (N) cycles. However, C and N concentrations are known to vary among peatlands contributing to the uncertainty of global C inventories, but there are few global studies that relate peatland classification to peat chemistry. We analyzed 436 peat cores sampled in 24 countries across six continents and measured C, N, and organic matter (OM) content at three depths down to 70 cm. Sites were distinguished between northern (387) and tropical (49) peatlands and assigned to one of six distinct broadly recognized peatland categories that vary primarily along a pH gradient. Peat C and N concentrations, OM content, and C:N ratios differed significantly among peatland categories, but few differences in chemistry with depth were found within each category. Across all peatlands C and N concentrations in the 10-20 cm layer, were 440 ± 85.1 g kg-1 and 13.9 ± 7.4 g kg-1, with an average C:N ratio of 30.1 ± 20.8. Among peatland categories, median C concentrations were highest in bogs, poor fens and tropical swamps (446-532 g kg-1) and lowest in intermediate and extremely rich fens (375-414 g kg-1). The C:OM ratio in peat was similar across most peatland categories, except in deeper samples from ombrotrophic tropical peat swamps that were higher than other peatlands categories. Peat N concentrations and C:N ratios varied approximately two-fold among peatland categories and N concentrations tended to be higher (and C:N lower) in intermediate fens compared with other peatland types. This study reports on a unique data set and demonstrates that differences in peat C and OM concentrations among broadly classified peatland categories are predictable, which can aid future studies that use land cover assessments to refine global peatland C and N stocks.


Asunto(s)
Carbono , Suelo , Carbono/química , Suelo/química , Humedales , Nitrógeno
6.
Glob Chang Biol ; 26(3): 1432-1445, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31736162

RESUMEN

Estimates of regional and global freshwater N2 O emissions have remained inaccurate due to scarce data and complexity of the multiple processes driving N2 O fluxes the focus predominantly being on summer time measurements from emission hot spots, agricultural streams. Here, we present four-season data of N2 O concentrations in the water columns of randomly selected boreal lakes covering a large variation in latitude, lake type, area, depth, water chemistry, and land use cover. Nitrate was the key driver for N2 O dynamics, explaining as much as 78% of the variation of the seasonal mean N2 O concentrations across all lakes. Nitrate concentrations varied among seasons being highest in winter and lowest in summer. Of the surface water samples, 71% were oversaturated with N2 O relative to the atmosphere. Largest oversaturation was measured in winter and lowest in summer stressing the importance to include full year N2 O measurements in annual emission estimates. Including winter data resulted in fourfold annual N2 O emission estimates compared to summer only measurements. Nutrient-rich calcareous and large humic lakes had the highest annual N2 O emissions. Our emission estimates for Finnish and boreal lakes are 0.6 and 29 Gg N2 O-N/year, respectively. The global warming potential of N2 O from lakes cannot be neglected in the boreal landscape, being 35% of that of diffusive CH4 emission in Finnish lakes.


Asunto(s)
Lagos , Óxido Nitroso , Dióxido de Carbono , Finlandia , Efecto Invernadero , Metano
7.
Sci Rep ; 8(1): 3838, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29497129

RESUMEN

Peatlands are globally significant sources of atmospheric methane (CH4). While several studies have examined the effects of nutrient addition on CH4 dynamics, there are few long-term peatland fertilization experiments, which are needed to understand the aggregated effects of nutrient deposition on ecosystem functioning. We investigated responses of CH4 flux and production to long-term field treatments with three levels of N (1.6-6.4 g m-2 yr-1 as NH4NO3), potassium and phosphorus (PK, 5.0 g P and 6.3 g K m-2 yr-1 as KH2PO4), and NPK in a temperate bog. Methane fluxes were measured in the field from May to August in 2005 and 2015. In 2015 CH4 flux was higher in the NPK treatment with 16 years of 6.4 g N m-2 yr-1 than in the control (50.5 vs. 8.6 mg CH4 m-2 d-1). The increase in CH4 flux was associated with wetter conditions derived from peat subsidence. Incubation of peat samples, with and without short-term PK amendment, showed that potential CH4 production was enhanced in the PK treatments, both from field application and by amending the incubation. We suggest that changes in this bog ecosystem originate from long-term vegetation change, increased decomposition and direct nutrient effects on microbial dynamics.


Asunto(s)
Metano/química , Nutrientes/química , Suelo/química , Dióxido de Carbono/análisis , Ecosistema , Metano/análisis , Nitrógeno/metabolismo , Ontario , Fósforo/metabolismo , Potasio/metabolismo , Estaciones del Año , Humedales
8.
Glob Chang Biol ; 19(12): 3729-39, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23868415

RESUMEN

To study vegetation feedbacks of nutrient addition on carbon sequestration capacity, we investigated vegetation and ecosystem CO2 exchange at Mer Bleue Bog, Canada in plots that had been fertilized with nitrogen (N) or with N plus phosphorus (P) and potassium (K) for 7-12 years. Gross photosynthesis, ecosystem respiration, and net CO2 exchange were measured weekly during May-September 2011 using climate-controlled chambers. A substrate-induced respiration technique was used to determine the functional ability of the microbial community. The highest N and NPK additions were associated with 40% less net CO2 uptake than the control. In the NPK additions, a diminished C sink potential was due to a 20-30% increase in ecosystem respiration, while gross photosynthesis rates did not change as greater vascular plant biomass compensated for the decrease in Sphagnum mosses. In the highest N-only treatment, small reductions in gross photosynthesis and no change in ecosystem respiration led to the reduced C sink. Substrate-induced microbial respiration was significantly higher in all levels of NPK additions compared with control. The temperature sensitivity of respiration in the plots was lower with increasing cumulative N load, suggesting more labile sources of respired CO2 . The weaker C sink potential could be explained by changes in nutrient availability, higher woody : foliar ratio, moss loss, and enhanced decomposition. Stronger responses to NPK fertilization than to N-only fertilization for both shrub biomass production and decomposition suggest that the bog ecosystem is N-P/K colimited rather than N-limited. Negative effects of further N-only deposition were indicated by delayed spring CO2 uptake. In contrast to forests, increased wood formation and surface litter accumulation in bogs seem to reduce the C sink potential owing to the loss of peat-forming Sphagnum.


Asunto(s)
Dióxido de Carbono/metabolismo , Secuestro de Carbono , Ecosistema , Nitrógeno/metabolismo , Fósforo/metabolismo , Plantas/metabolismo , Potasio/metabolismo , Ontario , Estaciones del Año , Humedales
9.
Oecologia ; 167(2): 355-68, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21544572

RESUMEN

Plants in nutrient-poor environments typically have low foliar nitrogen (N) concentrations, long-lived tissues with leaf traits designed to use nutrients efficiently, and low rates of photosynthesis. We postulated that increasing N availability due to atmospheric deposition would increase photosynthetic capacity, foliar N, and specific leaf area (SLA) of bog shrubs. We measured photosynthesis, foliar chemistry and leaf morphology in three ericaceous shrubs (Vaccinium myrtilloides, Ledum groenlandicum and Chamaedaphne calyculata) in a long-term fertilization experiment at Mer Bleue bog, Ontario, Canada, with a background deposition of 0.8 g N m(-2) a(-1). While biomass and chlorophyll concentrations increased in the highest nutrient treatment for C. calyculata, we found no change in the rates of light-saturated photosynthesis (A(max)), carboxylation (V(cmax)), or SLA with nutrient (N with and without PK) addition, with the exception of a weak positive correlation between foliar N and A(max) for C. calyculata, and higher V(cmax) in L. groenlandicum with low nutrient addition. We found negative correlations between photosynthetic N use efficiency (PNUE) and foliar N, accompanied by a species-specific increase in one or more amino acids, which may be a sign of excess N availability and/or a mechanism to reduce ammonium (NH(4)) toxicity. We also observed a decrease in foliar soluble Ca and Mg concentrations, essential minerals for plant growth, but no change in polyamines, indicators of physiological stress under conditions of high N accumulation. These results suggest that plants adapted to low-nutrient environments do not shift their resource allocation to photosynthetic processes, even after reaching N sufficiency, but instead store the excess N in organic compounds for future use. In the long term, bog species may not be able to take advantage of elevated nutrients, resulting in them being replaced by species that are better adapted to a higher nutrient environment.


Asunto(s)
Ericaceae/fisiología , Nitrógeno/metabolismo , Fotosíntesis , Hojas de la Planta/fisiología , Ericaceae/anatomía & histología , Ericaceae/química , Ericaceae/crecimiento & desarrollo , Nitrógeno/análisis , Ontario , Hojas de la Planta/anatomía & histología , Hojas de la Planta/química , Hojas de la Planta/crecimiento & desarrollo , Quebec , Rhododendron/anatomía & histología , Rhododendron/química , Rhododendron/crecimiento & desarrollo , Rhododendron/fisiología , Vaccinium/anatomía & histología , Vaccinium/química , Vaccinium/crecimiento & desarrollo , Vaccinium/fisiología , Humedales
10.
FEMS Microbiol Ecol ; 70(1): 87-98, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19656192

RESUMEN

Northern peatlands play a major role in the global carbon cycle as sinks for CO(2) and as sources of CH(4). These diverse ecosystems develop through accumulation of partially decomposed plant material as peat. With increasing depth, peat becomes more and more recalcitrant due to its longer exposure to decomposing processes. Compared with surface peat, deeper peat sediments remain microbiologically poorly described. We detected active archaeal communities even in the deep bottom layers (-220/-280 cm) of two Finnish fen-type peatlands by 16S rRNA-based terminal restriction fragment length polymorphism analysis. In the sediments of the northern study site, all detected archaea were methanogens with Rice Cluster II (RC-II) and Methanosaetaceae as major groups. In southern peatland, Crenarchaeota of a rare unidentified cluster were present together with mainly RC-II methanogens. RNA profiles showed a larger archaeal diversity than DNA-based community profiles, suggesting that small but active populations were better visualized with rRNA. In addition, potential methane production measurements indicated methanogenic activity throughout the vertical peat profiles.


Asunto(s)
Archaea/genética , Metano/biosíntesis , ARN de Archaea/genética , Suelo , Archaea/clasificación , Archaea/metabolismo , Biodiversidad , Finlandia , Sedimentos Geológicos/microbiología , Filogenia , Polimorfismo de Longitud del Fragmento de Restricción , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Microbiología del Suelo
11.
ISME J ; 2(11): 1157-68, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18650929

RESUMEN

Methane (CH(4)) emissions from boreal wetlands show considerable seasonal variation, including small winter emissions. We addressed the seasonality of CH(4)-producing microbes by comparing archaeal communities and the rates and temperature response of CH(4) production in a boreal fen at three key phases of growing season and in winter. Archaeal community analysis by terminal restriction fragment length polymorphism and cloning of 16S ribosomal DNA and reverse-transcribed RNA revealed slight community shifts with season. The main archaeal groups remained the same throughout the year and were Methanosarcinaceae, Rice cluster II and Methanomicrobiales-associated Fen cluster. These methanogens and the crenarchaeal groups 1.1c and 1.3 were detected from DNA and RNA, but the family Methanosaetaceae was detected only from RNA. Differences between DNA- and RNA-based results suggested higher stability of DNA-derived communities and better representation of the active CH(4) producers in RNA. Methane production potential, measured as formation of CH(4) in anoxic laboratory incubations, showed prominent seasonality. The potential was strikingly highest in winter, possibly due to accumulation of methanogenic substrates, and maximal CH(4) production was observed at ca. 30 degrees C. Archaeal community size, determined by quantitative PCR, remained similar from winter to summer. Low production potential in late summer after a water level draw-down suggested diminished activity due to oxygen exposure. Our results indicated that archaeal community composition and size in the boreal fen varied only slightly despite the large fluctuations of methanogenic potential. Detection of mRNA of the methanogenic mcrA gene confirmed activity of methanogens in winter, accounting for previously reported winter CH(4) emissions.


Asunto(s)
Archaea/clasificación , Archaea/metabolismo , Biodiversidad , Microbiología Ambiental , Metano/biosíntesis , Estaciones del Año , Archaea/aislamiento & purificación , Dermatoglifia del ADN , ADN de Archaea/química , ADN de Archaea/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Genes de ARNr , Datos de Secuencia Molecular , Filogenia , Polimorfismo de Longitud del Fragmento de Restricción , ARN de Archaea/genética , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Homología de Secuencia de Ácido Nucleico
12.
Chemosphere ; 52(3): 609-21, 2003 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-12738299

RESUMEN

We have examined how some major catchment disturbances may affect the aquatic greenhouse gas fluxes in the boreal zone, using gas flux data from studies made in 1994-1999 in the pelagic regions of seven lakes and two reservoirs in Finland. The highest pelagic seasonal average methane (CH(4)) emissions were up to 12 mmol x m(-2) x d(-1) from eutrophied lakes with agricultural catchments. Nutrient loading increases autochthonous primary production in lakes, promoting oxygen consumption and anaerobic decomposition in the sediments and this can lead to increased CH(4) release from lakes to the atmosphere. The carbon dioxide (CO(2)) fluxes were higher from reservoirs and lakes whose catchment areas were rich in peatlands or managed forests, and from eutrophied lakes in comparison to oligotrophic and mesotrophic sites. However, all these sites were net sources of CO(2) to the atmosphere. The pelagic CH(4) emissions were generally lower than those from the littoral zone. The fluxes of nitrous oxide (N(2)O) were negligible in the pelagic regions, apparently due to low nitrate inputs and/or low nitrification activity. However, the littoral zone, acting as a buffer for leached nitrogen, did release N(2)O. Anthropogenic disturbances of boreal lakes, such as increasing eutrophication, can change the aquatic greenhouse gas balance, but also the gas exchange in the littoral zone should be included in any assessment of the overall effect. It seems that autochthonous and allochthonous carbon sources, which contribute to the CH(4) and CO(2) production in lakes, also have importance in the greenhouse gas emissions from reservoirs.


Asunto(s)
Dióxido de Carbono/análisis , Agua Dulce/análisis , Efecto Invernadero , Metano/análisis , Óxido Nitroso/análisis , Atmósfera/análisis , Atmósfera/química , Monitoreo del Ambiente/métodos , Eutrofización , Finlandia , Agua Dulce/química , Geografía , Estaciones del Año , Temperatura , Factores de Tiempo , Movimientos del Agua , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...