Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
New Phytol ; 242(5): 1911-1918, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38628036

RESUMEN

Metabolic flux analysis (MFA) is a valuable tool for quantifying cellular phenotypes and to guide plant metabolic engineering. By introducing stable isotopic tracers and employing mathematical models, MFA can quantify the rates of metabolic reactions through biochemical pathways. Recent applications of isotopically nonstationary MFA (INST-MFA) to plants have elucidated nonintuitive metabolism in leaves under optimal and stress conditions, described coupled fluxes for fast-growing algae, and produced a synergistic multi-organ flux map that is a first in MFA for any biological system. These insights could not be elucidated through other approaches and show the potential of INST-MFA to correct an oversimplified understanding of plant metabolism.


Asunto(s)
Análisis de Flujos Metabólicos , Plantas , Análisis de Flujos Metabólicos/métodos , Plantas/metabolismo , Modelos Biológicos , Hojas de la Planta/metabolismo
2.
Appl Microbiol Biotechnol ; 106(8): 3231-3243, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35416487

RESUMEN

Global regulatory transcription factors play a significant role in controlling microbial metabolism under genetic and environmental perturbations. A system-level effect of carbon sources such as acetate on microbial metabolism under disrupted global regulators has not been well established. Acetate is one of the major substrates available in various nutrient niches such as the mammalian gut and a keto diet. A substantial amount of acetate gets secreted in aerobic metabolism. Therefore, investigating the study on acetate metabolism is highly significant. It is known that the global regulators fis and arcA regulate acetate uptake genes in E. coli under glucose conditions. This study deciphered the growth and flux distribution of E. coli transcription regulatory knockouts Δfis, ΔarcA and double deletion mutant, ΔarcAΔfis under acetate using 13C-metabolic flux analysis (MFA), which has not been investigated before. We observed that the mutants exhibited an expeditious growth rate (~ 1.2-1.6-fold) with a proportionate increase in acetate uptake rates compared to the wild type. 13C-MFA displayed the distinct metabolic reprogramming of intracellular fluxes via the TCA cycle, anaplerotic pathway and gluconeogenesis, which conferred an advantage of a faster growth rate with better carbon usage in all the mutants. This resulted in higher metabolic fluxes through the TCA cycle (~ 18-90%), lower gluconeogenesis (~ 15-35%) and higher CO2 and ATP production with the proportional increase in growth rate. The study reveals a novel insight by stating the sub-optimality of the wild-type strain grown under acetate substrate aerobically. These mutant strains efficiently oxidize acetate, thus acting as potential candidates for the biosynthesis of isoprenoids, biofuels, vitamins and various pharmaceutical products.Key Points• Mutants exhibited a better balance between energy and precursor synthesis than WT.• Leveraged in the unravelling of regulatory control under various nutrient shifts.• Metabolic readjustment resulted in optimal biomass requirement and faster growth.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Proteínas de la Membrana Bacteriana Externa/genética , Carbono/metabolismo , Ciclo del Ácido Cítrico , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Factor Proteico para Inverción de Estimulación/genética , Factor Proteico para Inverción de Estimulación/metabolismo , Regulación Bacteriana de la Expresión Génica , Proteínas Represoras/genética
3.
ACS Chem Biol ; 16(7): 1215-1222, 2021 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-34143620

RESUMEN

Bacterial accumulation of poly(3-hydroxybutyrate) [P(3HB)] is a metabolic strategy often adopted to cope with challenging surroundings. Ralstonia solanacearum, a phytopathogen, seems to be an ideal candidate with inherent ability to accumulate this biodegradable polymer of high industrial relevance. This study is focused on investigating the metabolic networks that channel glucose into P(3HB) using comparative genome analysis, 13C tracers, microscopy, gas chromatography-mass spectrometry (GC-MS), and proton nuclear magnetic resonance (1H NMR). Comparative genome annotation of 87 R. solanacearum strains confirmed the presence of a conserved P(3HB) biosynthetic pathway genes in the chromosome. Parallel 13C glucose feeding ([1-13C], [1,2-13C]) analysis mapped the glucose oxidation to 3-hydroxybutyrate (3HB), the metabolic precursor of P(3HB) via the Entner-Doudoroff pathway (ED pathway), potentially to meet the NADPH demands. Fluorescence microscopy, GC-MS, and 1H NMR analysis further confirmed the ability of R. solanacearum to accumulate P(3HB) granules. In addition, it is demonstrated that the carbon/nitrogen (C/N) ratio influences the P(3HB) yields, thereby highlighting the need to further optimize the bioprocessing parameters. This study provided key insights into the biosynthetic abilities of R. solanacearum as a promising P(3HB) producer.


Asunto(s)
Genoma , Hidroxibutiratos/metabolismo , Poliésteres/metabolismo , Ralstonia solanacearum/metabolismo , Vías Biosintéticas/genética , Isótopos de Carbono/química , Genómica , Glucosa/química , Glucosa/metabolismo , Glucólisis/fisiología , Hidroxibutiratos/química , Redes y Vías Metabólicas/genética , Poliésteres/química , Ralstonia solanacearum/genética
4.
mSystems ; 5(2)2020 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-32156794

RESUMEN

In Ralstonia solanacearum, a devastating phytopathogen whose metabolism is poorly understood, we observed that the Entner-Doudoroff (ED) pathway and nonoxidative pentose phosphate pathway (non-OxPPP) bypass glycolysis and OxPPP under glucose oxidation. Evidence derived from 13C stable isotope feeding and genome annotation-based comparative metabolic network analysis supported the observations. Comparative metabolic network analysis derived from the currently available 53 annotated R. solanacearum strains, including a recently reported strain (F1C1), representing the four phylotypes, confirmed the lack of key genes coding for phosphofructokinase (pfk-1) and phosphogluconate dehydrogenase (gnd) enzymes that are relevant for glycolysis and OxPPP, respectively. R. solanacearum F1C1 cells fed with [13C]glucose (99% [1-13C]glucose or 99% [1,2-13C]glucose or 40% [13C6]glucose) followed by gas chromatography-mass spectrometry (GC-MS)-based labeling analysis of fragments from amino acids, glycerol, and ribose provided clear evidence that rather than glycolysis and the OxPPP, the ED pathway and non-OxPPP are the main routes sustaining metabolism in R. solanacearum The 13C incorporation in the mass ions of alanine (m/z 260 and m/z 232), valine (m/z 288 and m/z 260), glycine (m/z 218), serine (m/z 390 and m/z 362), histidine (m/z 440 and m/z 412), tyrosine (m/z 466 and m/z 438), phenylalanine (m/z 336 and m/z 308), glycerol (m/z 377), and ribose (m/z 160) mapped the pathways supporting the observations. The outcomes help better define the central carbon metabolic network of R. solanacearum that can be integrated with 13C metabolic flux analysis as well as flux balance analysis studies for defining the metabolic phenotypes.IMPORTANCE Understanding the metabolic versatility of Ralstonia solanacearum is important, as it regulates the trade-off between virulence and metabolism (1, 2) in a wide range of plant hosts. Due to a lack of clear evidence until this work, several published research papers reported on the potential roles of glycolysis and the oxidative pentose phosphate pathway (OxPPP) in R. solanacearum (3, 4). This work provided evidence from 13C stable isotope feeding and genome annotation-based comparative metabolic network analysis that the Entner-Doudoroff pathway and non-OxPPP bypass glycolysis and OxPPP during the oxidation of glucose, a component of the host xylem pool that serves as a potential carbon source (5). The outcomes help better define the central carbon metabolic network of R. solanacearum that can be integrated with 13C metabolic flux analysis as well as flux balance analysis studies for defining the metabolic phenotypes. The study highlights the need to critically examine phytopathogens whose metabolism is poorly understood.

5.
Mol Biotechnol ; 59(8): 343-352, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28674943

RESUMEN

This study presents a novel approach of controlling vascular wilt in tomato by RNAi expression directed to pathogenicity genes of Fusarium oxysporum f. sp. lycopersici. Vascular wilt of tomato caused by Fusarium oxysporum f. sp. lycopersici leads to qualitative and quantitative loss of the crop. Limitation in the existing control measures necessitates the development of alternative strategies to increase resistance in the plants against pathogens. Recent findings paved way to RNAi, as a promising method for silencing of pathogenicity genes in fungus and provided effective resistance against fungal pathogens. Here, two important pathogenicity genes FOW2, a Zn(II)2Cys6 family putative transcription regulator, and chsV, a putative myosin motor and a chitin synthase domain, were used for host-induced gene silencing through hairpinRNA cassettes of these genes against Fusarium oxysporum f. sp. lycopersici. HairpinRNAs were assembled in appropriate binary vectors and transformed into tomato plant targeting FOW2 and chsV genes, for two highly pathogenic strains of Fusarium oxysporum viz. TOFOL-IHBT and TOFOL-IVRI. Transgenic tomatoes were analyzed for possible attainment of resistance in transgenic lines against fungal infection. Eight transgenic lines expressing hairpinRNA cassettes showed trivial disease symptoms after 6-8 weeks of infection. Hence, the host-induced posttranscriptional gene silencing of pathogenicity genes in transgenic tomato plants has enhanced their resistance to vascular wilt disease caused by Fusarium oxysporum.


Asunto(s)
Resistencia a la Enfermedad/inmunología , Fusarium/genética , Fusarium/patogenicidad , Silenciador del Gen , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Solanum lycopersicum/inmunología , Solanum lycopersicum/microbiología , Bioensayo , Genes Fúngicos , Solanum lycopersicum/citología , Haz Vascular de Plantas/citología , Haz Vascular de Plantas/microbiología , Plantas Modificadas Genéticamente , ARN Interferente Pequeño/metabolismo , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...