Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Appl Magn Reson ; 55(1-3): 251-277, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38357006

RESUMEN

Site-directed spin labeling electron paramagnetic resonance (SDSL-EPR) is an established tool for exploring protein structure and dynamics. Although nitroxide side chains attached to a single cysteine via a disulfide linkage are commonly employed in SDSL-EPR, their internal flexibility complicates applications to monitor slow internal motions in proteins and to structure determination by distance mapping. Moreover, the labile disulfide linkage prohibits the use of reducing agents often needed for protein stability. To enable the application of SDSL-EPR to the measurement of slow internal dynamics, new spin labels with hindered internal motion are desired. Here, we introduce a highly ordered nitroxide side chain, designated R9, attached at a single cysteine residue via a non-reducible thioether linkage. The reaction to introduce R9 is highly selective for solvent-exposed cysteine residues. Structures of R9 at two helical sites in T4 Lysozyme were determined by X-ray crystallography and the mobility in helical sequences was characterized by EPR spectral lineshape analysis, Saturation Transfer EPR, and Saturation Recovery EPR. In addition, interspin distance measurements between pairs of R9 residues are reported. Collectively, all data indicate that R9 will be useful for monitoring slow internal structural fluctuations, and applications to distance mapping via dipolar spectroscopy and relaxation enhancement methods are anticipated. Supplementary Information: The online version contains supplementary material available at 10.1007/s00723-023-01618-8.

2.
Chemistry ; 30(19): e202304307, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38277424

RESUMEN

The flavoprotein Cytochrome P450 reductase (CPR) is the unique electron pathway from NADPH to Cytochrome P450 (CYPs). The conformational dynamics of human CPR in solution, which involves transitions from a "locked/closed" to an "unlocked/open" state, is crucial for electron transfer. To date, however, the factors guiding these changes remain unknown. By Site-Directed Spin Labelling coupled to Electron Paramagnetic Resonance spectroscopy, we have incorporated a non-canonical amino acid onto the flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) domains of soluble human CPR, and labelled it with a specific nitroxide spin probe. Taking advantage of the endogenous FMN cofactor, we successfully measured for the first time, the distance distribution by DEER between the semiquinone state FMNH• and the nitroxide. The DEER data revealed a salt concentration-dependent distance distribution, evidence of an "open" CPR conformation at high salt concentrations exceeding previous reports. We also conducted molecular dynamics simulations which unveiled a diverse ensemble of conformations for the "open" semiquinone state of the CPR at high salt concentration. This study unravels the conformational landscape of the one electron reduced state of CPR, which had never been studied before.


Asunto(s)
Aminoácidos , NADPH-Ferrihemoproteína Reductasa , Óxidos de Nitrógeno , Humanos , Oxidación-Reducción , NADPH-Ferrihemoproteína Reductasa/metabolismo , Aminoácidos/metabolismo , Marcadores de Spin , Espectroscopía de Resonancia por Spin del Electrón , Transporte de Electrón , NADP/química , Flavinas/química , Compuestos Orgánicos , Mononucleótido de Flavina/química , Flavina-Adenina Dinucleótido/química , Cinética
3.
Molecules ; 28(7)2023 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-37049741

RESUMEN

EPR imaging techniques are known to be successful tools for mapping living bodies, especially because of the high transparency of tissues in the microwave range. This technique assumes the presence of radicals whose in vivo transport is also controlled by serum albumins. Accordingly, in this study, the interactions between 3-hydroxymethyl-1-oxyl-4-(pyren-1-yl)-2,2,5,5-tetramethyl-2,5-dihydro-1H-pyrrole radical and the human serum albumin molecules were investigated. To clarify the adsorption processes of this radical onto the surface of human serum albumin (HSA), the interaction of the OMe derivative of the radical was also examined parallel with the studies on the radical-HSA interactions. Considering the solubility issues and also to modulate the transport, inclusion complexes of the radical with a cavitand derivative were also studied. The latter interactions were observed through fluorescence spectroscopy, fluorescence polarization, and by EPR spectroscopy. As a double-sensor molecule, we found that the fluorophore nitroxide is a good candidate as it gave further information about host-guest interactions (fluorescence, fluorescence polarization, and EPR). We also found that in the presence of a cavitand, a complex with greater stability was formed between the sensor molecule and the human serum albumin. Based on these observations, we can conclude that applying this double-sensor (spin, fluorescent) molecule is useful in cases when different interactions can affect the EPR measurements.


Asunto(s)
Éteres Cíclicos , Resorcinoles , Humanos , Espectroscopía de Resonancia por Spin del Electrón/métodos , Albúmina Sérica Humana , Radicales Libres , Marcadores de Spin
4.
Membranes (Basel) ; 12(12)2022 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-36557148

RESUMEN

Spin probe EPR spectroscopy is currently the only method to quantitatively report on the orientational ordering of graphene oxide membranes. This technique is based on the analysis of EPR spectra of a membrane containing stable radicals sorbed on oxidized graphene planes. The efficiency of the method depends on the spin probe structure; therefore, it is important to find stable paramagnetic substances that are most sensitive to the alignment of graphene oxide membranes. In the present work, three novel stable nitroxide radicals containing aromatic fragments with two nitrogen atoms were tested as spin probes to study graphene oxide membranes. The spin-Hamiltonian parameters of the radicals in graphite oxide powder and orientational order parameters of the probes inside graphene oxide membrane were determined. The sensitivity of one of these radicals to membrane orientational ordering was found to be higher than for any of spin probes used previously. A likely reason for this higher sensitivity is the presence of heteroatoms which can facilitate interaction between paramagnetic molecules and oxygen-containing groups on the inner surface of the membrane. The new high-sensitivity spin probe may significantly increase the potential of EPR spectroscopy for studying the internal structure of graphene oxide membranes.

5.
Gynecol Oncol ; 164(1): 136-145, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34756749

RESUMEN

INTRODUCTION: TMEM205 is a novel transmembrane protein associated with platinum resistance (PR) in epithelial ovarian carcinoma (OC), however, the specific mechanisms associated with this resistance remain to be elucidated. METHODS: TMEM205 expression was evaluated in platinum-sensitive (PS) versus platinum resistant (PR) ovarian cancer cell lines and patient serum/tissues. Exosomal efflux of platinum was evaluated with inductively coupled plasma mass spectrometry (ICP-MS) after pre-treatment with small molecule inhibitors (L-2663/L-2797) of TMEM205 prior to treatment with platinum. Cytotoxicity of combination treatment was confirmed in vitro and in an in vivo model. RESULTS: TMEM205 expression was 10-20 fold higher in PR compared to PS ovarian cancer cell lines, serum samples, and tissues. Co-localization with CD1B was confirmed by in-situ proximity ligation assay suggesting that TMEM205 may mediate PR via the exosomal pathway. Exosomal secretion was significantly increased 5-10 fold in PR cell lines after treatment with carboplatin compared to PS cell lines. Pre-treatment with L-2663 prior to carboplatin resulted in significantly increased intracellular concentration of fluorescently-labeled cisplatin and decreased exosomal efflux of platinum. Decreased cell survival and tumor growth in vitro and in vivo was observed when PR cells were treated with a combination of L-2663 with carboplatin compared to carboplatin alone. CONCLUSION: TMEM205 appears to be involved in the development of PR in ovarian cancer through the exosomal efflux of platinum agents. This study provides pre-clinical evidence that TMEM205 could serve as a possible biomarker for PR as well as a therapeutic target in combination with platinum agents.


Asunto(s)
Antineoplásicos , Carboplatino , Proteínas de la Membrana , Neoplasias Ováricas , Animales , Femenino , Humanos , Ratones , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Carboplatino/farmacología , Carboplatino/uso terapéutico , Línea Celular Tumoral/efectos de los fármacos , Línea Celular Tumoral/metabolismo , Modelos Animales de Enfermedad , Resistencia a Antineoplásicos/efectos de los fármacos , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/efectos de los fármacos , Proteínas de la Membrana/metabolismo , Ratones Desnudos , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/metabolismo
6.
Int J Mol Sci ; 22(19)2021 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-34639104

RESUMEN

The interactions of two conformers of newly synthesized photoswitchable azobenzene analogue of methotrexate, called Phototrexate, with two cavitand derivatives, have been investigated in dimethyl sulfoxide medium. Photoluminescence methods have been applied to determine the complex stabilities and the related enthalpy and entropy changes associated to the complex formation around room temperature. Results show opposite temperature dependence of complex stabilities. The structure of the upper rims of the host molecules and the reordered solvent structure were identified as the background of the opposite tendencies of temperature dependence at molecular level. These results can support the therapeutic application of the photoswitchable phototrexate, because the formation of inclusion complexes is a promising method to regulate the pharmacokinetics of drug molecules.


Asunto(s)
Compuestos Azo/química , Éteres Cíclicos/química , Metotrexato/química , Resorcinoles/química , Compuestos Azo/metabolismo , Éteres Cíclicos/metabolismo , Isomerismo , Metotrexato/metabolismo , Modelos Moleculares , Estructura Molecular , Resorcinoles/metabolismo , Temperatura , Termodinámica
7.
Pharmaceuticals (Basel) ; 14(7)2021 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-34358091

RESUMEN

The scavenging effect of the antimetabolite dihydrofolate reductase inhibitor methotrexate (MTX) and the isomers of its photoswitchable derivate, cis- and trans-phototrexate (PHX), have been compared by ESR spectroscopy, with the application of a cyclic hydroxylamine spin probe. The results showed the most pronounced scavenging effect in the presence of trans-phototrexate (trans-PHX). At a low concentration (100 µM) cis-PHX also showed a greater scavenging effect than the parent molecule MTX. Direct antioxidant properties of the investigated molecules were measured by ABTS scavenging assay, which showed no significant difference between trans-PHX and cis-PHX, but both of the isomers of PHX showed a higher antioxidant capacity than MTX. These findings imply that trans-PHX may have more pronounced anti-inflammatory and tissue-protective effects than MTX, despite the lack of its cytotoxic, antineoplastic effect.

8.
Int J Mol Sci ; 22(16)2021 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-34445722

RESUMEN

Mitochondria have emerged as a prospective target to overcome drug resistance that limits triple-negative breast cancer therapy. A novel mitochondria-targeted compound, HO-5114, demonstrated higher cytotoxicity against human breast cancer lines than its component-derivative, Mito-CP. In this study, we examined HO-5114's anti-neoplastic properties and its effects on mitochondrial functions in MCF7 and MDA-MB-231 human breast cancer cell lines. At a 10 µM concentration and within 24 h, the drug markedly reduced viability and elevated apoptosis in both cell lines. After seven days of exposure, even at a 75 nM concentration, HO-5114 significantly reduced invasive growth and colony formation. A 4 h treatment with 2.5 µM HO-5114 caused a massive loss of mitochondrial membrane potential, a decrease in basal and maximal respiration, and mitochondrial and glycolytic ATP production. However, reactive oxygen species production was only moderately elevated by HO-5114, indicating that oxidative stress did not significantly contribute to the drug's anti-neoplastic effect. These data indicate that HO-5114 may have potential for use in the therapy of triple-negative breast cancer; however, the in vivo toxicity and anti-neoplastic effectiveness of the drug must be determined to confirm its potential.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Citostáticos/farmacología , Mitocondrias/efectos de los fármacos , Óxidos de Nitrógeno/farmacología , Pirroles/farmacología , Apoptosis/efectos de los fármacos , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Femenino , Humanos , Células MCF-7 , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Membranas Mitocondriales/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/metabolismo
9.
Sci Total Environ ; 796: 149042, 2021 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-34328904

RESUMEN

The characterization of the interaction of sulfonamides with soil is of particular interest in environmental risk and persistence assessment. In the present work electron spin resonance spectroscopy (ESR) was used to investigate the interaction kinetics of spin labelled sulfadiazine (SL-SDZ) with model clay-humic acid suspensions. The ESR spectra showed that SL-SDZ incubated with Leonardite humic acid (LHA) and Ca-hectorite as model clay was immobilized due to covalent binding of its aniline moiety to LHA. From the immobilization kinetics measured over a period of 1200 h a pseudo-first order reaction with a time constant of 82.6 ± 25.0 h of covalent binding was determined. Additionally, SL-SDZ was strongly sorbed by LHA immediately after incubation but not durably sequestered. Compared to incubation without Ca-hectorite the covalent binding kinetics of SL-SDZ as well as its strong sorption were retarded.


Asunto(s)
Sustancias Húmicas , Sulfadiazina , Arcilla , Espectroscopía de Resonancia por Spin del Electrón , Cinética , Óxidos de Nitrógeno , Marcadores de Spin , Suspensiones
10.
Biomedicines ; 9(7)2021 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-34209525

RESUMEN

SZV 1287 (3-(4,5-diphenyl-1,3-oxazol-2-yl)propanal oxime) is a novel multi-target candidate under preclinical development for neuropathic pain. It inhibits amine oxidase copper containing 3, transient receptor potential ankyrin 1 and vanilloid 1 (TRPV1) receptors. Mainly under acidic conditions, it is transformed to the cyclooxygenase inhibitor oxaprozin, which is ineffective for neuropathy. Therefore, an enterosolvent capsule is suggested for oral formulation, which we investigated for nociception, basic kinetics, and thermoregulatory safety in mice. The antihyperalgesic effect of SZV 1287 (10, 20, 50, and 200 mg/kg, p.o.) was determined in partial sciatic nerve ligation-induced traumatic neuropathy by aesthesiometry, brain and plasma concentrations by HPLC, and deep body temperature by thermometry. Its effect on proton-induced TRPV1 activation involved in thermoregulation was assessed by microfluorimetry in cultured trigeminal neurons. The three higher SZV 1287 doses significantly, but not dose-dependently, reduced neuropathic hyperalgesia by 50% of its maximal effect. It was quickly absorbed; plasma concentration was stable for 2 h, and it entered into the brain. Although SZV 1287 significantly decreased the proton-induced TRPV1-mediated calcium-influx potentially leading to hyperthermia, it did not alter deep body temperature. Oral SZV 1287 inhibited neuropathic hyperalgesia and, despite TRPV1 antagonistic action and brain penetration, it did not influence thermoregulation, which makes it a promising analgesic candidate.

11.
Molecules ; 26(14)2021 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-34299641

RESUMEN

The reaction of a diene nitroxide precursor with dichlorophenylphosphine in a McCormac procedure afforded 1,1,3,3-tetramethyl-5-phenyl-1,2,3,4,5,6-hexahydrophospholo[3,4-c]pyrrole-5-oxide-2-oxyl. Lithiation of the protected 3-iodo-pyrroline nitroxide followed by treatment with chlorodiphenylphosphine after deprotection afforded (1-oxyl-2,2,5,5-tetramethyl-2,5-dihydro-1H-pyrrol-3-yl)diphenylphosphine oxide, and after reduction, (1-oxyl-2,2,5,5-tetramethyl-2,5-dihydro-1H-pyrrol-3-yl)diphenylphosphine was realized, which was also supported by X-ray single crystal diffraction measurements. This pyrroline diphenylphosphine derivative was converted to hexadecylphosphonium salt, which is an analogue of antineoplastic agent, MITO-CP.

12.
ChemMedChem ; 15(24): 2470-2476, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-32935925

RESUMEN

The radiosynthesis, as well as the in vivo and ex vivo biodistribution of the 11 C radiolabelled 3-(4,5-diphenyl-1,3-oxazol-2-yl)propanal oxime (6, [11 C]SZV 1287) are reported. SZV 1287 is a novel semicarbazide-sensitive amine oxidase (SSAO) inhibitor and a promising candidate to be a novel analgesic for the treatment of neuropathic pain. Its radiolabelling was developed via a four-step radiosynthesis which started from the reaction of a Grignard reagent with [11 C]CO2 to produce [11 C]oxaprozin (3). In the next step this carboxylic acid 3 was directly reduced to yield the corresponding aldehyde, which was then converted into the oxime. [11 C]SZV 1287 was administered to male NMRI mice. The animals were examined with dynamic PET/MR imaging for 90 minutes. Biodistribution studies were performed at 10, 30, 60 and 120 minutes post injection. The accumulation of the labelled compound was observed in the brain of the animals. The main excretion pathway was found to be through the liver and intestines. These studies provide preliminary information for pharmacokinetic characterization of the SZV 1287.


Asunto(s)
Oxazoles/química , Oximas/química , Radiofármacos/química , Animales , Radioisótopos de Carbono/química , Masculino , Ratones , Oxazoles/síntesis química , Oxazoles/farmacocinética , Oximas/síntesis química , Oximas/farmacocinética , Tomografía de Emisión de Positrones , Radiofármacos/síntesis química , Radiofármacos/farmacocinética
13.
Molecules ; 25(10)2020 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-32456029

RESUMEN

Organophosphorus compounds occupy a significant position among the plethora of organic compounds, but a limited number of paramagnetic phosphorus compounds have been reported, including paramagnetic phosphonates. This paper describes the syntheses and further transformations of pyrroline and piperidine nitroxide phosphonates by well-established methods, such as the Pudovik, Arbuzov and Horner-Wadsworth-Emmons (HWE) reactions. The reaction of paramagnetic a-bromoketone produced a vinylphosphonate in the Perkow reaction. Paramagnetic a-hydroxyphosphonates could be subjected to oxidation, elimination and substitution reactions to produce various paramagnetic phosphonates. The synthesized paramagnetic phosphonates proved to be useful synthetic building blocks for carbon-carbon bond-forming reactions in the Horner-Wadsworth-Emmons olefination reactions. The unsaturated compounds achieved could be transformed into various substituted pyrroline nitroxides, proxyl nitroxides and paramagnetic polyaromatics. The Trolox® equivalent antioxidant capacity (TEAC) of new phosphonates was also screened, and tertiary a-hydroxyphosphonatate nitroxides exhibited remarkable antioxidant activity.


Asunto(s)
Óxidos de Nitrógeno/síntesis química , Organofosfonatos/síntesis química , Piperidinas/síntesis química , Pirroles/síntesis química , Alquenos/química , Carbono/química , Estructura Molecular , Óxidos de Nitrógeno/química , Organofosfonatos/química , Piperidinas/química , Pirroles/química , Estereoisomerismo
14.
Cell Biochem Biophys ; 78(2): 191-202, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32449075

RESUMEN

Pancreatic adenocarcinoma is an aggressive cancer with poor clinical prognosis and limited therapeutic options. There is a significant lack of effective, safe, and targeted therapies for successful treatment of pancreatic cancer. In this report, we describe the anticancer efficacy of two novel compounds, N-methylpiperazinyl diarylidenylpiperidone (L-2663) and its pro-nitroxide conjugate (HO-4589) evaluated on human pancreatic adenocarcinoma (AsPC-1) cell line and xenograft tumor in mice. Using flow cytometry, we determined the effect of the L-2663 and HO-4589 drugs in inducing mitochondrial toxicity, triggering cell-cycle arrest, and apoptosis. EPR spectroscopy was used to quantify cellular uptake, metabolic conversion and stability of HO-4589 in cells and in vivo monitoring of tumor oxygenation as a function of growth. The results established different antiproliferative efficacy of the L-2663 and HO-4589 compounds, with a targeted action on cancer cells while being less toxic to noncancerous cells. The study may have important implications in the future designs of safe and effective chemotherapeutic agents for the treatment of pancreatic cancer.


Asunto(s)
Antineoplásicos/farmacología , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Neoplasias Pancreáticas/tratamiento farmacológico , Piperazinas/farmacología , Piperidonas/farmacología , Animales , Apoptosis/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , División Celular , Línea Celular Tumoral , Supervivencia Celular , Ensayos de Selección de Medicamentos Antitumorales , Espectroscopía de Resonancia por Spin del Electrón , Fase G2 , Humanos , Ratones , Ratones Endogámicos NOD , Ratones SCID , Trasplante de Neoplasias , Oximetría , Especies Reactivas de Oxígeno/metabolismo
15.
Int J Mol Sci ; 21(2)2020 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-31941150

RESUMEN

Bergamottin (BM, 1), a component of grapefruit juice, acts as an inhibitor of some isoforms of the cytochrome P450 (CYP) enzyme, particularly CYP3A4. Herein, a new bergamottin containing a nitroxide moiety (SL-bergamottin, SL-BM, 10) was synthesized; chemically characterized, evaluated as a potential inhibitor of the CYP2C19, CYP3A4, and CYP2C9 enzymes; and compared to BM and known inhibitors such as ketoconazole (KET) (3A4), warfarin (WAR) (2C9), and ticlopidine (TIC) (2C19). The antitumor activity of the new SL-bergamottin was also investigated. Among the compounds studied, BM showed the strongest inhibition of the CYP2C9 and 2C19 enzymes. SL-BM is a more potent inhibitor of CYP3A4 than the parent compound; this finding was also supported by docking studies, suggesting that the binding positions of BM and SL-BM to the active site of CYP3A4 are very similar, but that SL-BM had a better ∆Gbind value than that of BM. The nitroxide moiety markedly increased the antitumor activity of BM toward HeLa cells and marginally increased its toxicity toward a normal cell line. In conclusion, modification of the geranyl sidechain of BM can result in new CYP3A4 enzyme inhibitors with strong antitumor effects.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Inhibidores del Citocromo P-450 CYP3A , Citocromo P-450 CYP3A/metabolismo , Furocumarinas , Marcadores de Spin/síntesis química , Animales , Inhibidores del Citocromo P-450 CYP3A/síntesis química , Inhibidores del Citocromo P-450 CYP3A/química , Inhibidores del Citocromo P-450 CYP3A/farmacología , Furocumarinas/química , Furocumarinas/farmacología , Células HeLa , Humanos , Ratones , Células 3T3 NIH
16.
Cell Biochem Biophys ; 77(2): 109-119, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31089934

RESUMEN

Pancreatic cancer has a 5-year survival rate below 10% and the treatment options are limited. Signal transducer and activator of transcription (STAT3) is a constitutively expressed protein in human pancreatic cancers and is associated with their poor prognosis. Targeting of STAT3 signaling using novel therapeutic agents is a potential strategy for pancreatic cancer treatment. Diarylidenylpiperidone (DAP) compounds, such as H-4073 and HO-3867, have been shown to be STAT3 inhibitors in several human ovarian cancers. Particularly, HO-3867 is an N-hydroxypyrroline derivative of DAP that has targeted cytotoxicity toward cancer cells without affecting healthy cells. In the present study, we evaluated the anticancer efficacy of H-4073 and HO-3867 in a human pancreatic cell line (AsPC-1). We found that both the compounds exhibited potential cytotoxicity to AsPC-1 cells by inducing G2/M cell-cycle arrest, apoptosis, and cell death, by mitochondrial damage and inhibition of STAT3 phosphorylation. In summary, H-4073 and HO-3867 are cytotoxic to AsPC-1 cells and seem to act through similar mechanisms, including STAT3 inhibition, cell-cycle arrest, and apoptosis.


Asunto(s)
Apoptosis/efectos de los fármacos , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Puntos de Control de la Fase M del Ciclo Celular/efectos de los fármacos , Piperidonas/química , Factor de Transcripción STAT3/metabolismo , Biomarcadores de Tumor/metabolismo , Línea Celular Tumoral , Ciclina D1/metabolismo , Humanos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Fosforilación/efectos de los fármacos , Piperidonas/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Factor de Transcripción STAT3/antagonistas & inhibidores
17.
Cell Biochem Biophys ; 77(1): 61-67, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30552554

RESUMEN

The synthesis and antiproliferative effect of a novel curcumin analog, 4,4'-disulfonyldiarylidenyl piperidone, are reported. The design of the molecule is based on the fusion of an antiproliferative segment, namely diarylidenyl piperidone (DAP), with N-hyroxypyrroline, which is known to metabolically convert to nitroxide and protect healthy cells. Cellular uptake, metabolic conversion, cytotoxicity and antiproliferative effect of the DAP derivative against HCT-116 human colon cancer cells have been determined. Based on cell viability and proliferation assays as well as western-blot analysis of major transcription factors and inhibitory proteins, it is determined that the DAP compound is cytotoxic by inhibiting cell survival and proliferation pathways. The findings may have important implications in the design and development of effective anticancer agents.


Asunto(s)
Antineoplásicos/farmacología , Proliferación Celular/efectos de los fármacos , Curcumina/farmacología , Antineoplásicos/química , Antineoplásicos/metabolismo , Apoptosis/efectos de los fármacos , Biomarcadores de Tumor/metabolismo , Neoplasias del Colon/metabolismo , Neoplasias del Colon/patología , Curcumina/análogos & derivados , Curcumina/metabolismo , Espectroscopía de Resonancia por Spin del Electrón , Células HCT116 , Humanos , Fosforilación/efectos de los fármacos , Piperidonas/química , Piperidonas/metabolismo , Piperidonas/farmacología , Especies Reactivas de Oxígeno/metabolismo , Factor de Transcripción STAT3/metabolismo , Proteína p53 Supresora de Tumor/metabolismo
18.
Molecules ; 23(8)2018 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-30103547

RESUMEN

There is growing recognition regarding the role of intracellular amyloid beta (Aß) in the Alzheimer's disease process, which has been linked with aberrant signaling and the disruption of protein degradation mechanisms. Most notably, intraneuronal Aß likely underlies the oxidative stress and mitochondrial dysfunction that have been identified as key elements of disease progression. In this study, we employed fluorescence imaging to explore the ability of a bifunctional small molecule to reduce aggregates of intracellular Aß and attenuate oxidative stress. Structurally, this small molecule is comprised of a nitroxide spin label linked to an amyloidophilic fluorene and is known as spin-labeled fluorene (SLF). The effect of the SLF on intracellular Aß accumulation and oxidative stress was measured in MC65 cells, a human neuronal cell line with inducible expression of the amyloid precursor protein and in the N2a neuronal cell line treated with exogenous Aß. Super-resolution microscopy imaging showed SLF decreases the accumulation of intracellular Aß. Confocal microscopy imaging of MC65 cells treated with a reactive oxygen species (ROS)-sensitive dye demonstrated SLF significantly reduces the intracellular Aß-induced ROS signal. In order to determine the contributions of the separate SLF moieties to these protective activities, experiments were also carried out on cells with nitroxides lacking the Aß targeting domain or fluorene derivatives lacking the nitroxide functionality. The findings support a synergistic effect of SLF in counteracting both the conformational toxicity of both endogenous and exogenous Aß, its promotion of ROS, and Aß metabolism. Furthermore, these studies demonstrate an intimate link between ROS production and Aß oligomer formation.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Estrés Oxidativo/efectos de los fármacos , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/química , Péptidos beta-Amiloides/genética , Péptidos beta-Amiloides/farmacología , Precursor de Proteína beta-Amiloide/química , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Línea Celular , Fluorenos/química , Fluorenos/farmacología , Expresión Génica , Humanos , Modelos Moleculares , Agregado de Proteínas/efectos de los fármacos , Agregación Patológica de Proteínas/metabolismo , Conformación Proteica , Multimerización de Proteína , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Marcadores de Spin
19.
Med Chem ; 13(8): 761-772, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28530545

RESUMEN

BACKGROUND: Natural products and their derivatives are widely used to treat cancer and other diseases associated with ROS- and RNS-induced damages. METHODS: A series of paramagnetic modified curcumin analogs and 3,5-diarylidene-piperidones (DAP) have been designed, synthesized, and characterized on their anti-proliferative and antioxidant activity. RESULTS: Biological characterization of the new compounds supported the earlier results that incorporation of a nitroxide moiety or its precursor into curcumin or diarylidenylpiperidone (DAP) scaffolds resulted in anti-proliferative effect toward cancerous cell-lines in case of aryl hydroxy and/or methoxy substituent containing derivatives, suggesting their potential for targeted therapeutic applications. In case of basic side chain derivatives, nitroxide incorporation gave unambiguous results, however in tendency the more accessible DAP derivatives had stronger anti-proliferative effect. In most cases, the nitroxide incorporation increased the TEAC value (proton and electron donation capability) of DAP derivatives. CONCLUSIONS: Among the compounds synthesized and investigated the spin-labeled curcumin and 3,5-bis(4-hydroxy-3-methoxybenzylidene)piperidin-4-one derivatives were the most effective antiproliferative and antioxidant derivatives.


Asunto(s)
Antineoplásicos/farmacología , Antioxidantes/farmacología , Benzotiazoles/antagonistas & inhibidores , Curcumina/farmacología , Óxidos de Nitrógeno/farmacología , Ácidos Sulfónicos/antagonistas & inhibidores , Antineoplásicos/síntesis química , Antineoplásicos/química , Antioxidantes/síntesis química , Antioxidantes/química , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Curcumina/química , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Estructura Molecular , Óxidos de Nitrógeno/química , Relación Estructura-Actividad
20.
PLoS One ; 12(3): e0174401, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28339485

RESUMEN

Vascular remodeling during chronic hypertension may impair the supply of tissues with oxygen, glucose and other compounds, potentially unleashing deleterious effects. In this study, we used Spontaneously Hypertensive Rats and normotensive Wistar-Kyoto rats with or without pharmacological inhibition of poly(ADP-ribose)polymerase-1 by an experimental compound L-2286, to evaluate carotid artery remodeling and consequent damage of neuronal tissue during hypertension. We observed elevated oxidative stress and profound thickening of the vascular wall with fibrotic tissue accumulation induced by elevated blood pressure. 32 weeks of L-2286 treatment attenuated these processes by modulating mitogen activated protein kinase phosphatase-1 cellular levels in carotid arteries. In hypertensive animals, vascular inflammation and endothelial dysfunction was observed by NF-κB nuclear accumulation and impaired vasodilation to acetylcholine, respectively. Pharmacological poly(ADP-ribose)polymerase-1 inhibition interfered in these processes and mitigated Apoptosis Inducing Factor dependent cell death events, thus improved structural and functional alterations of carotid arteries, without affecting blood pressure. Chronic poly(ADP-ribose)polymerase-1 inhibition protected neuronal tissue against oxidative damage, assessed by nitrotyrosine, 4-hydroxinonenal and 8-oxoguanosine immunohistochemistry in the area of Cornu ammonis 1 of the dorsal hippocampus in hypertensive rats. In this area, extensive pyramidal cell loss was also attenuated by treatment with lowered poly(ADP-ribose)polymer formation. It also preserved the structure of fissural arteries and attenuated perivascular white matter lesions and reactive astrogliosis in hypertensive rats. These data support the premise in which chronic poly(ADP-ribose)polymerase-1 inhibition has beneficial effects on hypertension related tissue damage both in vascular tissue and in the hippocampus by altering signaling events, reducing oxidative/nitrosative stress and inflammatory status, without lowering blood pressure.


Asunto(s)
Arterias Carótidas/efectos de los fármacos , Hipocampo/efectos de los fármacos , Hipertensión/metabolismo , Estrés Oxidativo/efectos de los fármacos , Poli(ADP-Ribosa) Polimerasa-1/antagonistas & inhibidores , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Remodelación Vascular/efectos de los fármacos , Animales , Presión Sanguínea/efectos de los fármacos , Arterias Carótidas/metabolismo , Arterias Carótidas/patología , Hipocampo/metabolismo , Hipocampo/patología , Hipertensión/patología , Masculino , Piperidinas/farmacología , Quinazolinas/farmacología , Ratas , Ratas Endogámicas SHR , Ratas Endogámicas WKY
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA