Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 13(1): 5906, 2022 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-36207329

RESUMEN

Negative ions are important in many areas of science and technology, e.g., in interstellar chemistry, for accelerator-based radionuclide dating, and in anti-matter research. They are unique quantum systems where electron-correlation effects govern their properties. Atomic anions are loosely bound systems, which with very few exceptions lack optically allowed transitions. This limits prospects for high-resolution spectroscopy, and related negative-ion detection methods. Here, we present a method to measure negative ion binding energies with an order of magnitude higher precision than what has been possible before. By laser-manipulation of quantum-state populations, we are able to strongly reduce the background from photodetachment of excited states using a cryogenic electrostatic ion-beam storage ring where keV ion beams can circulate for up to hours. The method is applicable to negative ions in general and here we report an electron affinity of 1.461 112 972(87) eV for 16O.

2.
J Phys Chem A ; 118(31): 6034-49, 2014 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-24945616

RESUMEN

An investigation into the dissociative recombination process for H(13)CO(+) using merged ion-electron beam methods has been performed at the heavy ion storage ring CRYRING, Stockholm, Sweden. We have measured the branching fractions of the different product channels at ∼ 0 eV collision energy to be the following: CO + H 87 ± 2%, OH + C 9 ± 2%, and O + CH 4 ± 2%. The formation of electronically excited CO in the dominant reaction channel has also been studied, and we report the following tentative branching fractions for the different CO product electronic states: CO(X (1)Σ(+)) + H, 54 ± 10%; CO(a (3)Π) + H, 23 ± 4%; and CO(a' (3)Σ(+)) + H, 23 ± 4%. The absolute cross section between ∼ 2-50 000 meV was measured and showed resonance structures between 3 and 15 eV. The cross section was fitted in the energy range relevant to astrophysics, i.e., between 1 and 300 meV, and was found to follow the expression σ = 1.3 ± 0.3 × 10(-16) E(-1.29 ± 0.05) cm(2) and the corresponding thermal rate constant was determined to be k(T) = 2.0 ± 0.4 × 10(-7)(T/300)(-0.79 ± 0.05) cm(3) s(-1). Radioastronomical observations with the IRAM 30 m telescope of HCO(+) toward the Red Rectangle yielded an upper column density limit of 4 × 10(11) cm(-2) of HCO(+) at the 1σ level in that object, indicating that previous claims that the dissociative recombination of HCO(+) plays an important role in the production of excited CO molecules emitting the observed Cameron bands in that object are not supported.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...