Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 2441, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38499565

RESUMEN

Lipid synthesis increases during the cell cycle to ensure sufficient membrane mass, but how insufficient synthesis restricts cell-cycle entry is not understood. Here, we identify a lipid checkpoint in G1 phase of the mammalian cell cycle by using live single-cell imaging, lipidome, and transcriptome analysis of a non-transformed cell. We show that synthesis of fatty acids in G1 not only increases lipid mass but extensively shifts the lipid composition to unsaturated phospholipids and neutral lipids. Strikingly, acute lowering of lipid synthesis rapidly activates the PERK/ATF4 endoplasmic reticulum (ER) stress pathway that blocks cell-cycle entry by increasing p21 levels, decreasing Cyclin D levels, and suppressing Retinoblastoma protein phosphorylation. Together, our study identifies a rapid anticipatory ER lipid checkpoint in G1 that prevents cells from starting the cell cycle as long as lipid synthesis is low, thereby preventing mitotic defects, which are triggered by low lipid synthesis much later in mitosis.


Asunto(s)
Lípidos , Mitosis , Animales , Ciclo Celular , Fase G1 , Fosforilación , Mamíferos
2.
J Cell Biol ; 220(8)2021 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-34037657

RESUMEN

After two converging DNA replication forks meet, active replisomes are disassembled and unloaded from chromatin. A key process in replisome disassembly is the unloading of CMG helicases (CDC45-MCM-GINS), which is initiated in Caenorhabditis elegans and Xenopus laevis by the E3 ubiquitin ligase CRL2LRR1. Here, we show that human cells lacking LRR1 fail to unload CMG helicases and accumulate increasing amounts of chromatin-bound replisome components as cells progress through S phase. Markedly, we demonstrate that the failure to disassemble replisomes reduces the rate of DNA replication increasingly throughout S phase by sequestering rate-limiting replisome components on chromatin and blocking their recycling. Continued binding of CMG helicases to chromatin during G2 phase blocks mitosis by activating an ATR-mediated G2/M checkpoint. Finally, we provide evidence that LRR1 is an essential gene for human cell division, suggesting that CRL2LRR1 enzyme activity is required for the proliferation of cancer cells and is thus a potential target for cancer therapy.


Asunto(s)
Proliferación Celular , Ensamble y Desensamble de Cromatina , ADN/biosíntesis , Proteínas Represoras/metabolismo , Fase S , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/genética , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/metabolismo , ADN/genética , ADN Helicasas/genética , ADN Helicasas/metabolismo , Humanos , Microscopía Fluorescente , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Unión Proteica , Proteínas Tirosina Quinasas/genética , Proteínas Tirosina Quinasas/metabolismo , Proteínas Represoras/genética , Factores de Tiempo
3.
Mol Cell ; 76(4): 562-573.e4, 2019 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-31543423

RESUMEN

Cells escape the need for mitogens at a restriction point several hours before entering S phase. The restriction point has been proposed to result from CDK4/6 initiating partial Rb phosphorylation to trigger a bistable switch whereby cyclin E-CDK2 and Rb mutually reinforce each other to induce Rb hyperphosphorylation. Here, using single-cell analysis, we unexpectedly found that cyclin E/A-CDK activity can only maintain Rb hyperphosphorylation starting at the onset of S phase and that CDK4/6 activity, but not cyclin E/A-CDK activity, is required to hyperphosphorylate Rb throughout G1 phase. Mitogen removal in G1 results in a gradual loss of CDK4/6 activity with a high likelihood of cells sustaining Rb hyperphosphorylation until S phase, at which point cyclin E/A-CDK activity takes over. Thus, it is short-term memory, or transient hysteresis, in CDK4/6 activity following mitogen removal that sustains Rb hyperphosphorylation, demonstrating a probabilistic rather than an irreversible molecular mechanism underlying the restriction point.


Asunto(s)
Proliferación Celular , Quinasa 4 Dependiente de la Ciclina/metabolismo , Quinasa 6 Dependiente de la Ciclina/metabolismo , Células Epiteliales/efectos de los fármacos , Puntos de Control de la Fase G1 del Ciclo Celular , Mitógenos/farmacología , Animales , Línea Celular , Relación Dosis-Respuesta a Droga , Células Epiteliales/enzimología , Fibroblastos/efectos de los fármacos , Fibroblastos/enzimología , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/enzimología , Humanos , Ratones , Modelos Biológicos , Fosforilación , Proteínas de Unión a Retinoblastoma/metabolismo , Transducción de Señal , Factores de Tiempo , Ubiquitina-Proteína Ligasas/metabolismo
4.
Curr Opin Cell Biol ; 39: 28-36, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26895312

RESUMEN

Toll-like receptors (TLRs) are important transmembrane proteins of the innate immune system that detect invading pathogens and subsequently orchestrate an immune response. The ensuing inflammatory processes are connected to lipid metabolism at multiple levels. Here, we describe different aspects of how membrane lipids can shape the response of TLRs. Recent reports have uncovered the role of individual lipid species on membrane protein function and mouse models have contributed to the understanding of how changes in lipid metabolism alter TLR signaling, endocytosis, and cytokine secretion. Finally, we discuss the importance of systematic approaches to identify the function of individual lipid species or the composition of membrane lipids in TLR-related processes.


Asunto(s)
Lípidos de la Membrana/metabolismo , Animales , Citocinas/metabolismo , Endocitosis , Humanos , Inflamación/metabolismo , Transducción de Señal , Receptores Toll-Like/metabolismo
5.
Cell ; 162(1): 170-83, 2015 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-26095250

RESUMEN

Lipid composition affects the biophysical properties of membranes that provide a platform for receptor-mediated cellular signaling. To study the regulatory role of membrane lipid composition, we combined genetic perturbations of sphingolipid metabolism with the quantification of diverse steps in Toll-like receptor (TLR) signaling and mass spectrometry-based lipidomics. Membrane lipid composition was broadly affected by these perturbations, revealing a circular network of coregulated sphingolipids and glycerophospholipids. This evolutionarily conserved network architecture simultaneously reflected membrane lipid metabolism, subcellular localization, and adaptation mechanisms. Integration of the diverse TLR-induced inflammatory phenotypes with changes in lipid abundance assigned distinct functional roles to individual lipid species organized across the network. This functional annotation accurately predicted the inflammatory response of cells derived from patients suffering from lipid storage disorders, based solely on their altered membrane lipid composition. The analytical strategy described here empowers the understanding of higher-level organization of membrane lipid function in diverse biological systems.


Asunto(s)
Inmunidad Innata , Lípidos/inmunología , Animales , Membrana Celular/química , Fibroblastos/metabolismo , Enfermedad de Gaucher/inmunología , Humanos , Interleucina-6/inmunología , Leucodistrofia de Células Globoides/inmunología , Redes y Vías Metabólicas , Ratones , Esfingolípidos/metabolismo , Receptores Toll-Like/inmunología
6.
Cell Rep ; 11(12): 1919-28, 2015 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-26095358

RESUMEN

Lipid metabolism and receptor-mediated signaling are highly intertwined processes that cooperate to fulfill cellular functions and safeguard cellular homeostasis. Activation of Toll-like receptors (TLRs) leads to a complex cellular response, orchestrating a diverse range of inflammatory events that need to be tightly controlled. Here, we identified the GPI-anchored Sphingomyelin Phosphodiesterase, Acid-Like 3B (SMPDL3B) in a mass spectrometry screening campaign for membrane proteins co-purifying with TLRs. Deficiency of Smpdl3b in macrophages enhanced responsiveness to TLR stimulation and profoundly changed the cellular lipid composition and membrane fluidity. Increased cellular responses could be reverted by re-introducing affected ceramides, functionally linking membrane lipid composition and innate immune signaling. Finally, Smpdl3b-deficient mice displayed an intensified inflammatory response in TLR-dependent peritonitis models, establishing its negative regulatory role in vivo. Taken together, our results identify the membrane-modulating enzyme SMPDL3B as a negative regulator of TLR signaling that functions at the interface of membrane biology and innate immunity.


Asunto(s)
Fosfodiesterasas de Nucleótidos Cíclicos Tipo 3/genética , Inmunidad Innata/genética , Inflamación/genética , Peritonitis/genética , Animales , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 3/inmunología , Modelos Animales de Enfermedad , Humanos , Inflamación/inmunología , Inflamación/patología , Lípidos/inmunología , Macrófagos/inmunología , Ratones , Peritonitis/inmunología , Peritonitis/patología , Receptores Toll-Like/genética , Receptores Toll-Like/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA