Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Genes Brain Behav ; 19(3): e12621, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31661603

RESUMEN

Neuropeptide S (NPS) is a neuropeptide involved in the regulation of fear. Because safety learning is impaired in patients suffering from anxiety-related psychiatric disorders, and polymorphisms of the human neuropeptide S receptor (NPSR) gene have also been associated with anxiety disorders, we wanted to investigate whether NPSR-deficiency interferes with safety learning, and how prior stress would affect this type of learning. We first investigated the effect of pre-exposure to two different types of stressors (electric stimuli or immobilization) on safety learning in female and male C57Bl/6 mice, and found that while stress induced by electric stimuli enhanced safety learning in males, there were no differences in safety learning following immobilization stress. To further investigate the role of the NPS system in stress-induced modulation of safety learning, we exposed NPSR-deficient mice to stress induced by electric stimuli 10 days before safety learning. In nonstressed male mice, NPSR-deficiency enhanced safety learning. As in male C57Bl/6 mice, pre-exposure to electric stimuli increased safety learning in male NPSR +/+ mice. This pre-exposure effect was blocked in NPSR-deficient male mice showing impaired, but still intact, safety learning in comparison to their NPSR +/+ and NPSR +/- littermates. There was neither a pre-exposure nor a genotype effect in female mice. Our findings provide evidence that pre-exposure to stress induced by electric stimuli enhances safety learning in male mice, and that NPSR-deficiency prevents the beneficial effect of stress exposure on safety learning. We propose an inverted U-shape relationship between stress and safety learning.


Asunto(s)
Condicionamiento Clásico , Receptores de Neuropéptido/genética , Animales , Estimulación Eléctrica , Miedo , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Receptores de Neuropéptido/deficiencia , Factores Sexuales
2.
Mol Neurobiol ; 56(5): 3616-3625, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30173406

RESUMEN

Early-life adversity (ELA) represents a major risk factor for the development of behavioral dysfunctions and mental disorders later in life. On the other hand, dependent on type, time point, and duration, ELA exposure can also induce adaptations, which result in better stress coping and resilience later in life. Guided by the hypothesis that chronic exposure to ELA results in dysfunctional brain and behavior, whereas short exposure to ELA may result in resilience, the behavioral and neurobiological consequences of long-term separation stress (LTSS) and short-term separation stress (STSS) were compared in a mouse model for ELA. In line with our hypothesis, we found that LTSS induced depressive-like behavior, whereas STSS reduced depressive-like behavioral symptoms. We then tested the hypothesis that the opposite behavioral outcomes of the two stress paradigms may be mediated by functional, epigenetically regulated changes of dopaminergic modulation in the hippocampal formation. We found that STSS exposure elevated dopamine receptor D1 (DRD1) gene expression and decreased gene expression of its downstream modulator DARPP-32 (32-kDa dopamine- and cAMP-regulated phosphoprotein), which was paralleled by decreased H3 acetylation at its gene promoter region. In contrast, LTSS elevated DARPP-32 gene expression, which was not paralleled by changes in histone acetylation and DRD1 gene expression. These findings indicate that short- and long-term neonatal exposure to ELA induces changes in dopaminergic molecular pathways, some of which are epigenetically regulated and which either alleviate or aggravate depressive-like symptoms later in life.


Asunto(s)
Dopamina/metabolismo , Epigénesis Genética , Hipocampo/metabolismo , Hipocampo/patología , Estrés Psicológico/genética , Acetilación , Animales , Conducta Animal , Fosfoproteína 32 Regulada por Dopamina y AMPc/genética , Fosfoproteína 32 Regulada por Dopamina y AMPc/metabolismo , Histonas/metabolismo , Inmovilización , Ratones Endogámicos C57BL , Regiones Promotoras Genéticas/genética , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo , Natación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...