Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Chemistry ; : e202401107, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38923064

RESUMEN

Red fluorescent dyes are usually charged, lypophilic molecules with the relatively high molecular weight, which tend to localize in specific intracellular locations, e.g., a cyanine dye Cy5 is biased towards mitochondria. They are often used as markers of biomolecules including nucleic acids and proteins. Since molecular weight of the dyes is much smaller than that of the biomolecules, the labelling has a negligible effect on the properties of the biomolecules. In contrast, conjugation of the dyes to low molecular weight (pro)drugs can dramatically alter their properties. For example, conjugates of Cy5 with lysosome-targeting aminoferrocenes accumulate in mitochondria and exhibit no intracellular effects characteristic for the parent (pro)drugs. Herein we tested several neutral and negatively charged dyes for labelling lysosome-targeting aminoferrocenes 7 and 8 as well as a non-targeted control 3. We found that a BODIPY derivative BDP-TR exhibits the desired unbiased properties: the conjugation does not disturb the intracellular localization of the (pro)drugs, their mode of action and cancer cell specificity. We used the conjugates to clarify the mechanism of action of the aminoferrocenes. In particular, we identified new intermediates, explained why lysosome targeting aminoferrocenes are more potent than their non-targeted counterparts and evaluated their distribution in vivo.

2.
RSC Med Chem ; 15(4): 1189-1197, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38665843

RESUMEN

Many known chemotherapeutic anticancer agents exhibit neutropenia as a dose-limiting side effect. In this paper we suggest a prodrug concept solving this problem for camptothecin (HO-cpt). The prodrug is programmed according to Boolean "AND" logic. In the absence of H2O2 (trigger T1), e.g. in the majority of normal cells, it exists as an inactive oligomer. In cancer cells and in primed neutrophils (high H2O2), the oligomer is disrupted forming intermediate (inactive) lipophilic cationic species. These are accumulated in mitochondria (Mit) of cancer cells, where they are activated by hydrolysis at mitochondrial pH 8 (trigger T2) with formation of camptothecin. In contrast, the intermediates remain stable in neutrophils lacking Mit and therefore a source of T2. In this paper we demonstrated a proof-of-concept. Our prodrug exhibits antitumor activity both in vitro and in vivo, but is not toxic to normal cell and neutrophils in contrast to known single trigger prodrugs and the parent drug HO-cpt.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...