Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Headache Pain ; 25(1): 129, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39107712

RESUMEN

Migraine, a primary headache disorder whose mechanism remains incompletely understood, appears to involve the activation of the trigeminovascular system (TS) during attacks. Research suggests that inflammatory processes mediated by the immune system may play a role in migraine pathophysiology. Neuroinflammation is often associated with migraine attacks, with cytokines serving as crucial mediators in the process. Elevated levels of pro-inflammatory cytokines, such as interleukin-1 beta (IL-1ß), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α), have been observed in the blood and cerebrospinal fluid of individuals experiencing migraine attacks. These cytokines have the capacity to sensitize pain pathways in the brain, thereby increasing sensitivity to pain stimuli. This phenomenon, known as central sensitization, is believed to contribute to the intensity and persistence of migraine pain. Kynurenines, endogenous mediators of glutamatergic mechanisms, can significantly influence the pathophysiology of primary headache disorders. The kynurenine system is collectively known as the kynurenine pathway (KP), which can act on multiple receptors, such as glutamate receptors, aryl hydrocarbon receptors (AhRs), G protein-coupled receptors 35 (GPR35), and α-7 nicotinic acetylcholine (α7 nACh) receptors. These receptors are also found on various cells of the immune system, so the role of the KP in the pathomechanism of primary headaches may also be mediated through them. In this review, our goal is to show a possible link between the receptors of the KP and immune system in the context of inflammation and migraine. Migraine research in recent years has focused on neuropeptides, such as calcitonin gene-related peptide (CGRP) and pituitary adenylate cyclase-activating polypeptide (PACAP) as potential pathogenic factors and possible therapeutic approaches. These peptides share many similarities in their characteristics and roles. For instance, they exhibit potent vasodilation, occur in both the peripheral and central nervous systems, and play a role in transmitting nociception and neurogenic inflammation. The investigation of potential connections between the aforementioned neuropeptides and the kynurenine pathway could play a significant role in uncovering the pathomechanism of migraine and identifying new drug candidates.


Asunto(s)
Quinurenina , Trastornos Migrañosos , Humanos , Trastornos Migrañosos/inmunología , Trastornos Migrañosos/fisiopatología , Trastornos Migrañosos/metabolismo , Quinurenina/metabolismo , Animales , Neuroinmunomodulación/fisiología , Enfermedades Neuroinflamatorias/inmunología , Enfermedades Neuroinflamatorias/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...